• Title/Summary/Keyword: Epidermal growth factor receptor gene

Search Result 70, Processing Time 0.029 seconds

Effect of Polysaccharides from Acanthopanax senticosus on Intestinal Mucosal Barrier of Escherichia coli Lipopolysaccharide Challenged Mice

  • Han, Jie;Xu, Yunhe;Yang, Di;Yu, Ning;Bai, Zishan;Bian, Lianquan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.134-141
    • /
    • 2016
  • To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) in preventing lipopolysaccharide (LPS)-induced intestinal injury, 18 mice (at 5 wk of age) were assigned to three groups with 6 replicates of one mouse each. Mice were administrated by oral gavage with or without ASPS (300 mg/kg body weight) for 14 days and were injected with saline or LPS at 15 days. Intestinal samples were collected at 4 h post-challenge. The results showed that ASPS ameliorated LPS-induced deterioration of digestive ability of LPS-challenged mice, indicated by an increase in intestinal lactase activity (45%, p<0.05), and the intestinal morphology, as proved by improved villus height (20.84%, p<0.05) and villus height:crypt depth ratio (42%, p<0.05), and lower crypt depth in jejunum (15.55%, p<0.05), as well as enhanced intestinal tight junction proteins expression involving occludin-1 (71.43%, p<0.05). ASPS also prevented intestinal inflammation response, supported by decrease in intestinal inflammatory mediators including tumor necrosis factor ${\alpha}$ (22.28%, p<0.05) and heat shock protein (HSP70) (77.42%, p<0.05). In addition, intestinal mucus layers were also improved by ASPS, as indicated by the increase in number of goblet cells (24.89%, p<0.05) and intestinal trefoil peptide (17.75%, p<0.05). Finally, ASPS facilitated mRNA expression of epidermal growth factor (100%, p<0.05) and its receptor (200%, p<0.05) gene. These results indicate that ASPS can prevent intestinal mucosal barrier injury under inflammatory conditions, which may be associated with up-regulating gene mRNA expression of epidermal growth factor and its receptor.

Differential Expression of EGFR Protein by Immunohistochemical Staining Methods and the Relationship Between the Degree of EGFR Protein Expression and EGFR Gene Mutation (면역조직화학적 염색 방법에 따른 상피세포 성장 수용체 단백(EGFR)의 발현정도의 차이 및 EGFR의 발현정도와 EGFR 유전자의 돌연변이와의 상관관계에 대한 고찰)

  • Yoon, In-Sook;Kim, Keuk-Jun;Lee, Eun-Hwa;Seok, Sang-Hee;Kim, Sang-Hee;Kim, Hyun-Yong;Song, Ho-Jung;Lee, Tae-Jong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.3
    • /
    • pp.217-222
    • /
    • 2007
  • In the last 5 years the Epidermal Growth Factor Receptor (EGFR) has emerged as one of the most important targets for drug development in oncology. Monoclonal antibodies targeting the external domain of EGFR have been shown to have clinical benefits in colorectal and head and neck cancer when combined with chemotherapy and/or radiation. Also the targeting of the epithelial growth factor receptor (EGFR) kinase domain using the closely related inhibitors gefitinib and erlotinib has generally been ineffective against solid tumors, many of which over express the receptor. We found that there were some differential expressions according to primary antibodies of the EGFR protein which being used as one of the histological tumor markers for non-small cell lung cancer (NSCLC). We also found that there are some differential expressions according to antibodies, the pH of the antigen retrieval (AR) buffer solutions and kinds of enzymes. There were some differential expressions according to the secondary antibodies and the detection systems. We analyzed the correlations between the immunohistochemical expressions of the EGFR protein and the gene mutations of the EGFR. The differences between automatic stainers and manual staining methods were also evaluated.

  • PDF

Label/Quencher-Free Detection of Exon Deletion Mutation in Epidermal Growth Factor Receptor Gene Using G-Quadruplex-Inducing DNA Probe

  • Kim, Hyo Ryoung;Lee, Il Joon;Kim, Dong-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.72-76
    • /
    • 2017
  • Detection of exon 19 deletion mutation in the epidermal growth factor receptor (EGFR) gene, which results in increased and sustained phosphorylation of EGFR, is important for diagnosis and treatment guidelines in non-small-cell lung cancer. Here, we have developed a simple and convenient detection system using the interaction between G-quadruplex and fluorophore thioflavin T (ThT) for discriminating EGFR exon 19 deletion mutant DNA from wild type without a label and quencher. In the presence of exon 19 deletion mutant DNA, the probe DNAs annealed to the target sequences were transformed into G-quadruplex structure. Subsequent intercalation of ThT into the G-quadruplex resulted in a light-up fluorescence signal, which reflects the amount of mutant DNA. Due to stark differences in fluorescence intensity between mutant and wild-type DNA, we suggest that the induced G-quadruplex structure in the probe DNA can report the presence of cancer-causing deletion mutant DNAs with high sensitivity.

Overview of ALK and ROS1 Rearranged Lung Cancer

  • Choi, Chang Min
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.6
    • /
    • pp.236-237
    • /
    • 2013
  • Many attempts have been made to find genetic abnormalities inducing carcinogenesis after the development of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor targeting EGFR in lung cancer. New target therapies have been already commercialized and studied along with the recent discovery of gene rearrangement involved in the carcinogenic process of non-small cell lung cancer. This study aims to investigate anplastic lymphoma kinase, c-ros oncogene 1, and receptor tyrosine kinase, in particular.

Fluorometric Detection of Low-Abundance EGFR Exon 19 Deletion Mutation Using Tandem Gene Amplification

  • Kim, Dong-Min;Zhang, Shichen;Kim, Minhee;Kim, Dong-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.662-667
    • /
    • 2020
  • Epidermal growth factor receptor (EGFR) mutations are not only genetic markers for diagnosis but also biomarkers of clinical-response against tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC). Among the EGFR mutations, the in-frame deletion mutation in EGFR exon 19 kinase domain (EGFR exon 19-del) is the most frequent mutation, accounting for about 45% of EGFR mutations in NSCLCs. Development of sensitive method for detecting the EGFR mutation is highly required to make a better screening for drug-response in the treatment of NSCLC patients. Here, we developed a fluorometric tandem gene amplification assay for sensitive detection of low-abundance EGFR exon 19-del mutant genomic DNA. The method consists of pre-amplification with PCR, thermal cycling of ligation by Taq ligase, and subsequent rolling circle amplification (RCA). PCR-amplified DNA from genomic DNA samples was used as splint DNA to conjugate both ends of linear padlock DNA, generating circular padlock DNA template for RCA. Long stretches of ssDNA harboring multiple copies of G-quadruplex structure was generated in RCA and detected by thioflavin T (ThT) fluorescence, which is specifically intercalated into the G-quadruplex, emitting strong fluorescence. Sensitivity of tandem gene amplification assay for detection of the EGFR exon 19-del from gDNA was as low as 3.6 pg, and mutant gDNA present in the pooled normal plasma was readily detected as low as 1% fraction. Hence, fluorometric detection of low-abundance EGFR exon 19 deletion mutation using tandem gene amplification may be applicable to clinical diagnosis of NSCLC patients with appropriate TKI treatment.

The nature of triple-negative breast cancer classification and antitumoral strategies

  • Kim, Songmi;Kim, Dong Hee;Lee, Wooseok;Lee, Yong-Moon;Choi, Song-Yi;Han, Kyudong
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.35.1-35.7
    • /
    • 2020
  • Identifying the patterns of gene expression in breast cancers is essential to understanding their pathophysiology and developing anticancer drugs. Breast cancer is a heterogeneous disease with different subtypes determined by distinct biological features. Luminal breast cancer is characterized by a relatively high expression of estrogen receptor (ER) and progesterone receptor (PR) genes, which are expressed in breast luminal cells. In ~25% of invasive breast cancers, human epidermal growth factor receptor 2 (HER2) is overexpressed; these cancers are categorized as the HER2 type. Triple-negative breast cancer (TNBC), in which the cancer cells do not express ER/PR or HER2, shows highly aggressive clinical outcomes. TNBC can be further classified into specific subtypes according to genomic mutations and cancer immunogenicity. Herein, we discuss the brief history of TNBC classification and its implications for promising treatments.

Signal Transduction of MUC5AC Expression in Airway Mucus Hypersecretory Disease (기도의 점액 과분비 질환에서 MUC5AC의 발현의 신호 전달 경로에 관한 연구)

  • Shim, Jae Jeong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.1
    • /
    • pp.21-30
    • /
    • 2003
  • Background : Mucin synthesis in airways has been reported to be regulated by the epidermal growth factor receptor (EGFR) system. Epidermal growth factor receptor transactivation was identified as a critical element in G-protein-coupled receptors (GPCRs)-induced mitogenic signaling. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. This study was hypothesized that lipopolysaccharide (LPS)-induced mucin production associates with epidermal growth factor receptor transactivation, and MUC5AC production associates with epidermal growth factor receptor transactivation by G-protein-coupled receptors that regulates by metalloproteinase. Method : MUC5AC mucin production was examined in NCI-H292 cells and MUC5AC protein synthesis was assessed using ELISA. For the evaluation of mechanism of LPS-induced MUC5AC production, $TNF{\alpha}$ was measured using ELISA with or without pretreatment of heterotrimeric G-protein inhibitor, mastoparan. MUC5AC protein was measure with pretreatment of polyclonal $TNF{\alpha}$ antibody or mastoparan on LPS-induced MUC5AC production. For the evaluation of relation of G-protein and MUC5AC production, G-protein stimulant, mastopara-7, or matrix metalloproteinase, ADAM10, was added to NCI-H292 cells. MUC5AC protein was measure with pretreatment of polyclonal EGF antibody on mastoparan-7-induced MUC5AC production. Results : LPS alone did not increase significantly MUC5AC production. LPS with $TNF{\alpha}$ induced dose-dependently MUC5AC production in NCI-H292 cells. LPS increased dose-dependently $TNF{\alpha}$ secretion, which was inhibited by mastoparan. LPS with $TNF{\alpha}$-induced MUC5AC production was inhibited by neutralizing polyclonal $TNF{\alpha}$ antibody, mastoparan or AG 1472. Mastoparan-7 or ADAM10 increased dose-dependently MUC5AC production, which was inhibited by polyclonal neutralizing EGF antibody. Conclusion : In LPS-induced MUC5AC synthesis, LPS causes $TNF{\alpha}$ secretion, which induces EGFR expression. EGFR tyrosine kinase phosphorylation result in MUC5AC production. EGF-R transactivation by G-protein-coupled receptors requires matrix metalloproteinase cleavage of proHB-EGF.

Relationship between Epidermal Growth Factor Receptor Gene Mutations and Clinicopathological Features in Patients with Non-Small Cell Lung Cancer in Western Turkey

  • Unal, Olcun Umit;Oztop, Ilhan;Calibasi, Gizem;Baskin, Yasemin;Koca, Dogan;Demir, Necla;Akman, Tulay;Ellidokuz, Hulya;Yilmaz, Ahmet Ugur
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3705-3709
    • /
    • 2013
  • Background: To investigate epidermal growth factor receptor (EGFR) gene mutations in patients with non-small cell lung cancer (NSCLC) and to analyze any relationship with clinicopathological features and prognosis. Materials and Methods: EGFR gene exons 18-21 in 48 specimens of paraffin-embedded tumor tissue from NSCLC patients were amplified by PCR, followed by direct sequencing and analysis of links to clinicopathological features and prognosis. Results: EGFR mutations were detected in 18 of 48 (42.6%) patients with NSCLC. There were 9 cases of mutations in exon 20, 7 in exon 19 and 2 in exon 21. Mutations were more frequently observed in women (5/7 pts, 71.4%) than in men (13/41 pts, 31.7%) (p=0.086) and in non-smokers (5/5 pts, 100%) than smokers (13/43 pts, 30.2%). There was negative correlation of EGFR mutations with smoking status (p=0.005). EGFR mutations were more frequently observed with adenocarcinoma histology (13/32 pts, 40.6%) than in other types (5/16 pts, 31.3%) (p=0.527). The patients with EGFR mutations had better survival than those with wild-type EGFR (p=0.08). There was no association of EGFR mutations with metastatic spread. Conclusions: EGFR mutations in NSCLC were here demonstrated more frequently in females, non-smokers and adenocarcinoma histology in the western region of Turkey. Patients with EGFR mutations have a better prognosis.

Factors that Predict Clinical Benefit of EGFR TKI Therapy in Patients with EGFR Wild-Type Lung Adenocarcinoma

  • Kim, Seo Yun;Myung, Jae Kyung;Kim, Hye-Ryoun;Na, Im Il;Koh, Jae Soo;Baek, Hee Jong;Kim, Cheol Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.1
    • /
    • pp.62-70
    • /
    • 2019
  • Background: Epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancers have emerged as key predictive biomarkers in EGFR tyrosine kinase inhibitor (TKI) treatment. However, a few patients with wild-type EGFR also respond to EGFR TKIs. This study investigated the factors predicting successful EGFR TKI treatment in lung adenocarcinoma patients with wild-type EGFR. Methods: We examined 66 patients diagnosed with lung adenocarcinoma carrying wide-type EGFR who were treated with EGFR TKIs. The EGFR gene copy number was assessed by silver in situ hybridization (SISH). We evaluated the clinical factors and EGFR gene copy numbers that are associated with a favorable clinical response to EGFR TKIs. Results: The objective response rate was 12.1%, while the disease control rate was 40.9%. EGFR SISH analysis was feasible in 23 cases. Twelve patients tested EGFR SISH-positive, and 11 were EGFR SISH-negative, with no significant difference in tumor response and survival between EGFR SISH-positive and -negative patients. The overall median progression-free survival (PFS) and overall survival (OS) of 66 patients were 2.1 months and 9.7 months, respectively. Female sex and Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 0-1 were independent predictors of PFS. ECOG PS 0-1 and a low tumor burden of extrathoracic metastasis were independent predictors of good OS. Conclusion: Factors such as good PS, female sex, and low tumor burden may predict favorable outcomes following EGFR TKI therapy in patients with EGFR wild-type lung adenocarcinoma. However, EGFR gene copy number was not predictive of survival.

PKHD1 Gene Silencing May Cause Cell Abnormal Proliferation through Modulation of Intracellular Calcium in Autosomal Recessive Polycystic Kidney Disease

  • Yang, Ji-Yun;Zhang, Sizhong;Zhou, Qin;Guo, Hong;Zhang, Ke;Zheng, Rong;Xiao, Cuiying
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.467-474
    • /
    • 2007
  • Autosomal recessive polycystic kidney disease (ARPKD) is one of the important genetic disorders in pediatric practice. Mutation of the polycystic kidney and hepatic disease gene 1 (PKHD1) was identified as the cause of ARPKD. The gene encodes a 67-exon transcript for a large protein of 4074 amino acids termed fibrocystin, but its function remains unknown. The neoplastic-like in cystic epithelial proliferation and the epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) axis overactivity are known as the most important characteristics of ARPKD. Since the misregulation of $Ca^{2+}$ signaling may lead to aberrant structure and function of the collecting ducts in kidney of rat with ARPKD, present study aimed to investigate the further mechanisms of abnormal proliferation of cystic cells by inhibition of PKHD1 expression. For this, a stable PKHD1-silenced HEK-293T cell line was established. Then cell proliferation rates, intracellular $Ca^{2+}$ concentration and extracellular signal-regulated kinase 1/2 (ERK1/2) activity were assessed after treatment with EGF, a calcium channel blocker and agonist, verapamil and Bay K8644. It was found that PKHD1-silenced HEK-293T cell lines were hyperproliferative to EGF stimulation. Also PKHD1-silencing lowered the intracellular $Ca^{2+}$ and caused EGF-induced ERK1/2 overactivation in the cells. An increase of intracellular $Ca^{2+}$ in PKHD1-silenced cells repressed the EGF-dependent ERK1/2 activation and the hyperproliferative response to EGF stimulation. Thus, inhibition of PKHD1 can cause EGF-induced excessive proliferation through decreasing intracellular $Ca^{2+}$ resulting in EGF-induced ERK1/2 activation. Our results suggest that the loss of fibrocystin may lead to abnormal proliferation in kidney epithelial cells and cyst formation in ARPKD by modulation of intracellular $Ca^{2+}$.