• Title/Summary/Keyword: Epidermal growth factor(EGF)

Search Result 269, Processing Time 0.022 seconds

Expression of Recombinant Epidermal Growth Factor in E. coli

  • Chang Shin Yoon;Eun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.86-89
    • /
    • 1997
  • Epidermal growth factor(EGF) known as a urgastrone is a powerful mitogen with a wide variety of possibilities for medical usages. A mature EGF coding region was isolated from human prepro-EGF sequence by a conventional PCR and cloned into pQE vector in which the gene product was supposed to be expressed with 6$\times$His tag for the subsequent purification. The recombinant mature EGF was expressed in M15[Rep4], an Escherichia coli host strain, in amount of 30-40% of total proteins pressent in E. coli extract by the addition of isopropylthio-$\beta$-galactopyranoside (IPTG). The recombinant EGF purified using a Ni2+-NTA affinity colume chromatography was active in its ability to induce phosphorylation on tyrosine residues of several substrate proteins when murine NH3T3 and human MRC-5 fibroblast cells were stimulated with it. This work may provide the basic technology and information for the production of recombinant EGF.

  • PDF

Detection of Protein Kinase C Isoenzymes in the Growth of Human Epidermal Keratinocytes by Growth Factors (Growth Factor를 처리한 피부상피세포로부터 Protein Kinase C Isoenzyme의 검출)

  • Eun-Young Joo;Nam-Woo Kim
    • Biomedical Science Letters
    • /
    • v.6 no.2
    • /
    • pp.83-91
    • /
    • 2000
  • Subconfluent neonatal human epidermal keratinocytes were treated with a concentration 200 ng/$m\ell$ of human recombinant epidermal growth factor (hrEGF), human recombinant insulin-like growth factor-1 (hrIGF-1), and with a combination of hrEGF and hrIGF-1. Cytoplasmic and membrane-associated proteins were extracted and assayed. Proteins were separated by SDS-PAGE, and subjected to the western blot analysis. In the cytoplasmic fraction, the PKC concentration of keratinocyte treated with hrIGF-1 was higher than the control group, but the concentration of control group was the highest than the others in the membrane fraction. In the cytoplasmic fraction, EGF stimulated PKC-$\beta$II, -$\delta$, -$\theta$, and also stimulated PKC-$\alpha$, -$\beta$I, -$\delta$, -$\Im$ and -$\theta$ in the membrane fraction. IGF-1 stimulated PKC-$\beta$I, -$\Im$ and -$\theta$ in the cytoplasmic, PKC-$\alpha$, -$\beta$I, -$\delta$, -$\Im$, - $\varepsilon$ and -$\theta$ in the membrane. In the cells treated with a combination of EGF and IGF-1, PKC-$\alpha$, -$\beta$I, -$\Im$ and -$\theta$ in the cytoplasmic fraction, PKC-$\alpha$, -$\delta$, -$\Im$, -$\varepsilon$ and -$\theta$ in the membrane fraction were stimulated.

  • PDF

Treatment of Epidermal Growth Factor (EGF) enhances Nuclear Maturation of Porcine Oocytes and Stimulates Expression of ER/Golgi Transport Proteins

  • Hwangbo, Yong;Oh, Hae-In;Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.131-138
    • /
    • 2017
  • This study was conducted to investigate stimulatory effect of epidermal growth factor (EGF) on nuclear maturation and the expression level of EGF-receptor (EGFR), GM-130 (a marker of Golgi apparatus), transport protein Sec61 subunit beta ($Sec61{\beta}$), and coatomer protein complex subunit gamma 2 (COPG2) in porcine oocytes. The cumulus-oocyte complexes were collected from follicle with 3-6 mm in diameter. They were incubated in medium with/without EGF for 22 h (IVM I) and subsequently incubated hormone-free medium with/without EGF for 22 h (IVM II). Nuclear maturation state was checked by aceto-orcein stain. Protein expression of EGFR, GM-130, $Sec61{\beta}$, and COPG2 were measured by immunofluorescence. In results, nuclear maturation of oocytes in EGF non-treated oocytes were significantly lower than EGF-treated groups at IVM I or IVM II stage (P<0.05), whereas maturational rate in EGF treatment groups at both of IVM stage was higher in among the all treatment groups (P<0.05). EGFR, GM-130, $Sec61{\beta}$ and COPG2 were expressed in the cytoplasm of oocytes. Especially, GM-130 and EGFR were strongly expressed, but $Sec61{\beta}$ and COPG2 were weakly expressed in cortical area of cytoplasm. The protein level of GM-130, $Sec61{\beta}$, and COPG2 were significantly higher in the EGF-treated groups (P<0.05). However EGFR was no difference between non EGF-treated groups and control. In conclusion, EGF plays an important role in the systems for oocyte maturation with endoplasmic reticulum and Golgi apparatus. In addition, the protein levels of $Sec61{\beta}$ and COPG2 could be changed by EGF in the porcine oocytes during maturation.

Beta-Catenin Downregulation Contributes to Epidermal Growth Factor-induced Migration and Invasion of MDAMB231 Cells

  • Kwon, Arang;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.43 no.3
    • /
    • pp.161-169
    • /
    • 2018
  • We previously demonstrated that epidermal growth factor (EGF) enhances cell migration and invasion of breast cancer cells in a SMAD ubiquitination regulatory factor 1 (SMURF1)-dependent manner and that SMURF1 induces degradation of ${\beta}-catenin$ in C2C12 cells. However, the relationship between EGF-induced SMURF1 and ${\beta}-catenin$ expression in breast cancer cells remains unclear. So, we investigated if EGF and SMURF1 regulate ${\beta}-catenin$ expression in MDAMB231 human breast cancer cells. When MDAMB231 cells were incubated with EGF for 24, 48, and 72 hours, EGF significantly increased expression levels of SMURF1 mRNA and protein while suppressing expression levels of ${\beta}-catenin$ mRNA and protein. Overexpression of SMURF1 downregulated ${\beta}-catenin$ mRNA and protein, whereas knockdown of SMURF1 increased ${\beta}-catenin$ expression and blocked EGF-induced ${\beta}-catenin$ downregulation. Knockdown of ${\beta}-catenin$ enhanced cell migration and invasion of MDAMB231 cells, while ${\beta}-catenin$ overexpression suppressed EGF-induced cell migration and invasion. Furthermore, knockdown of ${\beta}-catenin$ enhanced vimentin expression and decreased cytokeratin expression, whereas ${\beta}-catenin$ overexpression decreased vimentin expression and increased cytokeratin expression. These results suggest that EGF downregulates ${\beta}-catenin$ in a SMURF1-dependent manner and that ${\beta}-catenin$ downregulation contributes to EGF-induced cell migration and invasion in MDAMB breast cancer cells.

Analysis of cell survival genes in human gingival fibroblasts after sequential release of trichloroacetic acid and epidermal growth factor using the nano-controlled release system (나노방출제어시스템을 이용하여 trichloroacetic acid와 epidermal growth factor의 순차적 방출을 적용한 인간치은섬유아세포의 세포생존 관련 유전자 연구분석)

  • Cho, Joon Youn;Lee, Richard sungbok;Lee, Suk Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.145-157
    • /
    • 2020
  • Purpose: This study was to determine the possible effects of trichloroacetic acid (TCA) and epidermal growth factor (EGF) through cell survival genes of the PI3K-AKT signaling pathway when applying an hydrophobically modified glycol chitosan (HGC)-based nanocontrolled release system to human gingival fibroblasts in oral soft tissue regeneration. Materials and Methods: An HGC-based nano-controlled release system was produced, followed by the loading of TCA and EGF. The group was divided into control (CON), TCA-loaded nano-controlled release system (EXP1), and the TCA- and EGF- individually loaded nano-controlled release system (EXP2). A total for 29 genes related to the PI3K-AKT signaling pathway were analyzed after 48h of culture in human gingival fibroblasts. Real-time PCR, 1- way ANOVA and multiple regression analysis were performed. Results: Cell survival genes were significantly upregulated in EXP1 and EXP2. From multiple regression analysis, ITGB1 was determined to be the most influential factor for AKT1 expression. Conclusion: The application of TCA and EGF through the HGC-based nano-controlled release system can up-regulate the cell survival pathway.

Effects of Epidermal Growth Factor on the Apoptosis and Implantation Related Genes in Bovine Embryos Developing in vitro

  • Park, Sae-Young;Tae, Jin-Cheol;Kim, Eun-Young;Park, Se-Pill;Lim, Jin-Ho;Kim, Nam-Hyung
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.114-114
    • /
    • 2003
  • Epidermal growth factor (EGF) induces well-documented mitogenic and differentiating effects on murine and bovine preimplantation embryos. However, the effects of EGF on apoptosis and implantation-related gene expression in bovine embryos developing in vitro have not been evaluated. The objective of this study was to determine the effects of exogenous EGF in the presence and absence of BSA on the preimplantation development of bovine embryos. In addition, we measured cell number, apoptosis, and expression of apoptosis and implantation-related genes of the blastocysts that developed in these culture conditions. In vitro produced bovine embryos were randomly cultured in the same medium containing 0 or 10 ng/ml EGF in the presence and absence of 0.8% BSA. More 2-cell embryos developed into blastocysts at day 7 when BSA was present than when BSA was absent. The addition of 10 ng/$m\ell$ EGF into the medium did not significantly increase the developmental rate and the cell numbers per blastocyst. However, addition of EGF in the presence of 0.8% BSA significantly reduced the degree of apoptosis in the blastocysts (P<0.01). To investigate whether EGF modulates mRNA expression of apoptosis-related genes, mRNA was prepared from single blastocysts and each preparation was subjected to RT-PCR for Bcl-2 and Bax transcripts. EGF did not alter the relative abundance of Bax gene expression in the presence of BSA, but increase Bcl-2 (P<0.01) The relative abundance of Interferon tau expression was increased by EGF treatment in the presence of BSA. These results suggest that EGF and BSA synergistically enhance Bcl-2 and interferone tau gene expression, which may result in a net increase in viability in bovine embryos.

  • PDF

Effects of Epidermal Growth Factor on the Apoptosis and Implantation Related Genes in Bovine Embryos Developing in vitro

  • Park, Sae-Young;Tae, Jin-Cheal;Kim, Eun-Young;Park, Se-Pill;Lim, Jin-Ho;Kim, Nam-Hyung
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.99-99
    • /
    • 2003
  • Epidermal growth factor (EGF) induces well-documented mitegenic and differentiating effects on murine and bovine preimplantation embryos. However, the effects of EGF on apoptosis and implantation-related gene expression in bovine embryos developing in vitro have not been evaluated. The objective of this study was to determine the effects of exogenous EGF in the presence and absence of BSA on the preimplantation development of bovine embryos. In addition, we measured cell number, apoptosis, and expression of apoptosis and implantation-related genes of the blastocysts that developed in these culture conditions. In vitro produced bovine embryos were randomly cultured in the same medium containing 0 or 10 ng/$m\ell$ EGF in the presence and absence of 0.8% BSA. More 2-cell embryos developed into blastocysts at day 7 when BSA was present than when BSA was absent. The addition of 10 ng/$m\ell$ EGF into the medium did not significantly increase the developmental rate and the cell numbers per blastocyst. However, addition of EGF in the presence of 0.8% BSA significantly reduced the degree of apoptosis in the blastocysts (P< 0.01). To investigate whether EGF modulates mRNA expression of apoptosis-related genes, mRNA was prepared from single blastocysts and each preparation was subjected to RT-PCR for Bcl-2 and Bax transcripts. EGF did not alter the relative abundance of Bax gene expression in the presence of BSA, but increase Bcl-2 (P < 0.01). The relative abundance of Interferon tau expression was increased by EGF treatment in the presence of BSA. These results suggest that EGF and BSA synergistically enhance Bcl-2 and interferone tau gene expression, which may result in a net increase in viability in bovine embryos.

  • PDF

The Effect of Epidermal Growth Factor on Cell Proliferation and Its Related Signal Pathways in Pig Hepatocytes

  • Kim Dong-Il;Han Ho-Jae;Park Soo-Hyun
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.249-254
    • /
    • 2006
  • It has been reported that liver is a very important organ to xenotransplantation. Pig is known to be a most suitable species in transplantation of human organs. However, the physiological function of pig hepatocytes is not clear elucidated. Epidermal growth factor (EGF) is known to be a mitogen in various cell systems. Thus, we examined the effect of EGF on cell proliferation and its related signal cascades in primary cultured pig hepatocytes. EGF stimulates cell proliferation in a dose (>1ng/ml) dependent manner. EGF-induced increase of $[^3H]-thymidine$ incorporation was blocked by AG 1478 ($10^{-6}M$, an EGF receptor antagonist) genistein and herbymycin A (tyrosine kinase inhibitors, $10^{-6}M$), suggesting the role of activation and tyrosine phosphorylation of EGF receptor. In addition, EGF-induced increase of $[^3H]-thymidine$ incorporation was prevented by neomycin $(10^{-4}M)$, U73122 $(10^{-5}M)$ (phospholipase C [PLC] inhibitors), staurosporine ($(10^{-8}M)$, or bisindolylmaleimide I $(10^{-6}M)$ (protein kinase C [PKC] inhibitors), suggesting the role of PLC and PKC. Moreover, EGF-induced increase of $[^3H]-thymidine$ incorporation was blocked by PD 98059 (a p44/42 mitogen activated protein kinase [MAPK] inhibitor), SB 203580 (a p38 MAPK inhibitor), and SP 600125 (a JNK inhibitor). EGF increased the translocation of PKC from cytosol to membrane fraction and activated p42/44 MAPK, p38 MAPK and JNK. In conclusion, EGF stimulates cell proliferation via PKC and MAPK in cultured pig hepatocytes.

  • PDF

Stabilization of Epidermal Growth Factor in Aqueous Solution and Ointment Base (수용액 및 연고기제중의 상피세포 성장 인자의 안정화)

  • Kim, Chong-Kook;Kim, Kyoung-Mi;Kwon, Soo-Yeon
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.2
    • /
    • pp.139-143
    • /
    • 1997
  • Epidermal growth factor (EGF) is a mitogen which activate the proliferation of basal cells in skin, which implicate the wound healing in severe skin damage such as burn. To carry out the preclinical test for the pharmacological action of EGF, EGF in transdermal delivery system must be stable. Since EGF is a protein susceptible to proteolysis and unstable in aqueous solution, in vitro stabilization of EGF is prerequisite for the formulation. In this study, effect of additives on the stability of EGF is investigated in vitro. The stability of EGF in aqueous solution was enhanced with the various water-soluble polysaccharides such as HPMC, sorbitol, mannitol and dextrin. EGF was successfully extracted from the ointment with 5% HPMC solution, and EGF in aqueous solution and ointment was also successfully stabilized with 5% HPMC. The ointments prepared with different amount of EGF were applied on the damaged dorsal skin of rats for the determination of optimal concentration of EGF. The ointment with EGF $(10\;{\mu}g/g)$ showed good wound healing action on the damaged skin of rats.

  • PDF

Epidermal Growth Factor Receptors Increase in Rabbit Embryonal Implantation (배아착상에 대한 Epidermal Growth Factor 수용체의 동태)

  • Lee, Yu-Il
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.18 no.2
    • /
    • pp.181-187
    • /
    • 1991
  • Epidermal growth facter(EGF)는 내열성이 강하고 분자량이 6045 dalton인 단쇄상의 polypeptide로써, Cohen에 의해 생쥐의 악하선에서 처음 발견된 이래, 여러학자들에 의해 많은 연구가 되어왔다. 인체의 EGF는 urogastrone이라고도 불리우며, 인체의 소변에서 처음 검출되었고 분자구조 및 생리작용이 생쥐의 EGF와 매우 유사한 것으로 판명되었다. EGF의 자세한 작용기전은 확실히 규명되어있지는 않지만 세포의 증식과 분화를 촉진시키며 위산의 분비를 억제시킨다고 알려져 있다. 또한 EGF receptor는 분자량이 170,000${\sim}$180,000dalton인 세포표면의 polypeptide로써 인체, 쥐, 닭, 소 등의 세포막조직에 특이하게 결합되어 있다. 최근 수년동안 몇몇 학자들에 의해 EGF가 배아와 태아 및 태반의 성장을 촉진시키고 chorionic gonadotrophin과 placental lactogen의 분비를 증진하는데 기여할 것이라고 가정되어 왔다. 그러나 아직까지 배아착상에 대한 EGF의 작용여부에 관해서는 발표된 문헌이 없어 저자는 radioreceptor assay를 이용하여 EGF receptor binding과 토끼의 배아착상과의 관계를 규명하고자 임신경과에 따른 착상부위와 비착상부위의 자궁 및 태아측 태반과 모체측 태반을 분리취득하고 receptor binding assay를 시행하여 다음과 같은 결론을 얻었다. 1. 전임신군과 비임신군의 자궁조직의 membrane fraction으로부터 specific한 EGF receptor binding이 관찰되었다. 2. 착상전 임신 3일에 자궁조직의 EGF receptor수는 4.72 +0.16($10\;mol/{\mu}g$)로 비임신시보다 의의있게 증가되어 있었고(p<0.01), 착상시기인 임신 7일에는 착상된 부위에서 20.33+6.58로 훨씬 더 높은 측정치를 나타내었다(p<0.05). 3. 착상이후 가장 먼저 취득된 임신 14일의 태아측 태반은 모체측 태반의 1.39+0.49에 비해 훨씬 높은 11.94+1.97의 EGF receptor 측정치를 보였다 (p<0.01). 4. 이상의 소견들로 보아 EGF가 토끼의 배아착상에 밀접한 관련이 있을 것으로 추측되며, 이러한 착상전후의 EGF의 작용은 태아측으로부터 일 것으로 예상된다.

  • PDF