• 제목/요약/키워드: Epidermal growth factor(EGF)

Search Result 269, Processing Time 0.042 seconds

PKHD1 Gene Silencing May Cause Cell Abnormal Proliferation through Modulation of Intracellular Calcium in Autosomal Recessive Polycystic Kidney Disease

  • Yang, Ji-Yun;Zhang, Sizhong;Zhou, Qin;Guo, Hong;Zhang, Ke;Zheng, Rong;Xiao, Cuiying
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.467-474
    • /
    • 2007
  • Autosomal recessive polycystic kidney disease (ARPKD) is one of the important genetic disorders in pediatric practice. Mutation of the polycystic kidney and hepatic disease gene 1 (PKHD1) was identified as the cause of ARPKD. The gene encodes a 67-exon transcript for a large protein of 4074 amino acids termed fibrocystin, but its function remains unknown. The neoplastic-like in cystic epithelial proliferation and the epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) axis overactivity are known as the most important characteristics of ARPKD. Since the misregulation of $Ca^{2+}$ signaling may lead to aberrant structure and function of the collecting ducts in kidney of rat with ARPKD, present study aimed to investigate the further mechanisms of abnormal proliferation of cystic cells by inhibition of PKHD1 expression. For this, a stable PKHD1-silenced HEK-293T cell line was established. Then cell proliferation rates, intracellular $Ca^{2+}$ concentration and extracellular signal-regulated kinase 1/2 (ERK1/2) activity were assessed after treatment with EGF, a calcium channel blocker and agonist, verapamil and Bay K8644. It was found that PKHD1-silenced HEK-293T cell lines were hyperproliferative to EGF stimulation. Also PKHD1-silencing lowered the intracellular $Ca^{2+}$ and caused EGF-induced ERK1/2 overactivation in the cells. An increase of intracellular $Ca^{2+}$ in PKHD1-silenced cells repressed the EGF-dependent ERK1/2 activation and the hyperproliferative response to EGF stimulation. Thus, inhibition of PKHD1 can cause EGF-induced excessive proliferation through decreasing intracellular $Ca^{2+}$ resulting in EGF-induced ERK1/2 activation. Our results suggest that the loss of fibrocystin may lead to abnormal proliferation in kidney epithelial cells and cyst formation in ARPKD by modulation of intracellular $Ca^{2+}$.

Effects of Transforming Growth Factor-β and Epidermal Growth Factor on the Osteoclast-like Cell Formation in the Mouse Bone Marrow Cell Culture (마우스 골수세포 배양시 transforming growth factor-β와 epidermal growth factor가 파골세포양세포의 형성에 미치는 영향)

  • Lim, Choong-Nam;Ko, Seon-Yle;Kim, Jung-Keun;Kim, Se-Won
    • Journal of Oral Medicine and Pain
    • /
    • v.25 no.1
    • /
    • pp.53-62
    • /
    • 2000
  • Bone marrow culture systems are widely used to differentiate osteoclast-like cells in vitro using several osteotropic hormones. In this study, we isolated and cultured the mouse bone marrow cells with or without some osteotropic hormones such as parathyroid hormone(PTH), prostaglandin $E_2(PGE_2)$ and $l,25(OH)_2-vitamin$ $D_3$(Vit. $D_3$). We confirmed the formation of osteoclast-like cells morphologically and functionally by the expression of tartrate-resistant acid phosphatase(TRAP) and by their capability to resorb dentin slices. We also studied the effects of transforming growth $factor-{\beta}(TGF-{\beta})$ and epidermal growth factor(EGF) on the Vit. $D_3-induced$ osteoclast-like cell formation. In control, a few multinucleated cells were formed whereas PTH and $PGE_2$ increased the number of multinucleated cells. PTH, $PGE_2$ and Vit. $D_3$ induced the formation of TRAP-positive multinucleated cells. After culture of mouse bone marrow cells on the dentin slices with or without osteotropic hormones, giant cells with diverse morphology were found on the dentin slices under the scanning electronmicroscopy. After removing the attached cells, resorption pits were identified on the dentin slices, and the shape of resorption pits was variable. EGF increased the osteoclast-like cell formation induced by Vit. $D_3$, however, $TGF-{\beta}$ showed biphasic effect, which at low concentration, increased and at high concentration, decreased the osteoclast-like cell formation induced by Vit. $D_3$.

  • PDF

EGF, IGF-I, VEGF and CSF2: Effects on Trophectoderm of Porcine Conceptus

  • Jeong, Wooyoung;Song, Gwonhwa
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.21-34
    • /
    • 2014
  • The majority of early embryonic mortality in pregnancy occurs during the peri-implantation stage, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation period. This maternal-conceptus interaction is especially crucial in pigs because in them non-invasive epitheliochorial placentation occurs, in which the pre-implantation phase is prolonged. During the pre-implantation period, conceptus survival and the establishment of pregnancy are known to depend on the developing conceptus receiving an adequate supply of histotroph, which contains a wide range of nutrients and growth factors. Evidence links growth factors including epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), vascular endothelial growth factor (VEGF), and colony-stimulating factor 2 (CSF2) to embryogenesis or implantation in various mammalian species; however, in the case of pig, little is known about such functions of these growth factors, especially their regulatory mechanisms at the maternal-conceptus interface. Our research group has presented evidence for promising growth factors affecting cellular activities of primary porcine trophectoderm (pTr) cells, and we have identified potential intracellular signaling pathways responsible for the activities induced by these factors. Therefore, this review focuses on promising growth factors at the maternal-conceptus interface regulating the development of the porcine conceptus and playing pivotal roles in implantation events during early pregnancy in pigs.

Apigenin and Wogonin Regulate Epidermal Growth Factor Receptor Signaling Pathway Involved in MUC5AC Mucin Gene Expression and Production from Cultured Airway Epithelial Cells

  • Sikder, Md. Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Park, Su Hyun;Kim, Ju-Ock;Hong, Jang-Hee;Seok, Jeong Ho;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.3
    • /
    • pp.120-126
    • /
    • 2014
  • Background: We investigated whether wogonin and apigenin significantly affect the epidermal growth factor receptor (EGFR) signaling pathway involved in MUC5AC mucin gene expression, and production from cultured airway epithelial cells; this was based on our previous report that apigenin and wogonin suppressed MUC5AC mucin gene expression and production from human airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with wogonin or apigenin for 15 minutes or 24 hours and then stimulated with epidermal growth factor (EGF) for 24 hours or the indicated periods. Results: We found that incubation of NCI-H292 cells with wogonin or apigenin inhibited the phosphorylation of EGFR. The downstream signals of EGFR such as phosphorylation of MEK1/2 and ERK1/2 were also inhibited by wogonin or apigenin. Conclusion: The results suggest that wogonin and apigenin inhibits EGFR signaling pathway, which may explain how they inhibit MUC5AC mucin gene expression and production induced by EGF.

Evaluation of the gastroprotective effects of 20 (S)-ginsenoside Rg3 on gastric ulcer models in mice

  • Zhang, Kai;Liu, Ying;Wang, Cuizhu;Li, Jiannan;Xiong, Lingxin;Wang, Zhenzhou;Liu, Jinping;Li, Pingya
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.550-561
    • /
    • 2019
  • Background: Gastric ulcer (GU) is a common gastrointestinal disease that can be induced by many factors. Finding an effective treatment method that contains fewer side effects is important. 20 (S)-ginsenoside Rg3 is a kind of protopanaxadiol and has shown superior antiinflammatory and antioxidant effects in many studies, especially cancer studies. In this study, we examined the treatment efficacy of 20 (S)-ginsenoside Rg3 on GU. Methods: Three kinds of GU models, including an alcohol GU model, a pylorus-ligated GU model, and an acetic acid GU model, were used. Mouse endothelin-1 (ET-1) and nitric oxide (NO) levels in blood and epidermal growth factor (EGF), superoxide dismutase, and NO levels in gastric mucosa were evaluated. Hematoxylin and eosin staining of gastric mucosa and immunohistochemical staining of ET-1, inducible nitric oxide synthase (NOS2), and epidermal growth factor receptors were studied. Ulcer index (UI) scores and UI ratios were also analyzed to demonstrate the GU conditions in different groups. Furthermore, Glide XP from $Schr{\ddot{o}}dinger$ was used for molecular docking to clarify the interactions between 20 (S)-ginsenoside Rg3 and EGF and NOS2. Results: 20 (S)-ginsenoside Rg3 significantly decreased the UI scores and UI ratios in all the three GU models, and it demonstrated antiulcer effects by decreasing the ET-1 and NOS2 levels and increasing the NO, superoxide dismutase, EGF, and epidermal growth factor receptor levels. In addition, high-dose 20 (S)-ginsenoside Rg3 showed satisfactory gastric mucosa protection effects. Conclusion: 20 (S)-ginsenoside Rg3 can inhibit the formation of GU and may be a potential therapeutic agent for GU.

Effects of Baicalin, Baicalein and Schizandrin on Airway Mucin Production Induced by Epidermal Growth Factor and Phorbol Ester

  • Lee, Hyun-Jae;Lee, Su-Yel;Kim, Young-Sik;Jeon, Byeong-Kyou;Lee, Jae-Woo;Bae, Heung-Seog;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.396-401
    • /
    • 2010
  • We conducted this study to investigate whether baicalin, baicalein or schizandrin significantly affect MUC5AC mucin production induced by epidermal growth factor (EGF) or phorbol ester (PMA) in human airway epithelial cells. Confluent NCI-H292 cells were pretreated with varying concentrations of baicalin, baicalein or schizandrin for 30 min and then stimulated with EGF or PMA for 24 h, respectively. MUC5AC mucin protein production was measured by ELISA. The results were as follows: (1) Baicalin was found to inhibit the production of MUC5AC mucin protein induced by both EGF and PMA. (2) Baicalein, the aglycone of baicalin, also inhibited MUC5AC mucin production. (3) Schizandrin, derived from Schizandrae Fructus, inhibited MUC5AC mucin production by the same inducers. These results suggest that baicalin, baicalein and schizandrin can regulate the production of mucin protein by directly acting on human airway epithelial cells.

Effect of Heparin-binding Epidermal Growth Factor (HB-EGF) on Integrin $\alpha_{\nu}-\betaFe_3$ Expression in Preimplantation Mouse Embryos

  • Lim, Jung-Jin;Shin, Hyun-Sang;Lee, Ji-Won;Kang, Sue-Man;Lee, Sung-Eun;Kang, Han-Seung;Kim, Moon-Kyoo
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.102-102
    • /
    • 2002
  • Heparin-bindin epidermal growth factor (HB-EGF) is one of the EGF family to be expressed at the time of implantation in the mouse uterus. Although HB-EGF has been shown to stimulate the development of embryo and uterus in the mouse, its correlation between cell adhesion molecules remains undefined. Integrin $\alpha$$_{ν}$$\beta$$_3$, one of the cell adhesion molecules, is an important mediator of cell-substratum and cell-cell adhesion in implantation. In the present studies, we investigated the effects of HB-EGF on the embryonic development, initiation of implantation and expression of integrin $\alpha$$_{ν}$$\beta$$_3$ in in vitro culture, blocking of HB-EGF, RT-PCR and immunofluores cence analysis. The results showed that HB-EGF significantly improved the developmental rate of hatched embryos (24.1%, p<0.01) and outgrowth embryos (42.5%, p<0.01). On the other hand, this growth factor showed no offset before the hatching embryonic stage. Analysis of RT-PCR showed that HB-EGF upregulated the expression level of integrina $\alpha$$_{ν}$$\beta$$_3$ subunit genes on the preimplantation embryo and outgrowth of blastocyst (120hr and 144hr after hCG injection). Immunofluorescence analysis showed that the integrin $\alpha$$_{ν}$$\beta$$_3$ subunits localized at the pericellular borders and cell-cell contact areas. Increase in fluorescence intensity was observed in the HB-EGF treated embryos. Intrauterine injection of an anti-HB-EGF antiserum at day 3 significantly decreased the number of implantation sites (14.4, p<0.01) and significantly increased the number of recovered embryos(6.4, p<0.05) at day 5. From these results, it imply that HB-EGF improve the embryo development and accelerated the expression of integrin $\alpha$$_{ν}$$\beta$$_3$ in the preimplantation mouse embryos.

  • PDF

The Effect of Recombinant Human Epidermal Growth Factor on Cisplatin and Radiotherapy Induced Oral Mucositis in Mice (마우스에서 Cisplatin과 방사선조사로 유발된 구내염에 대한 재조합 표피성장인자의 효과)

  • Na, Jae-Boem;Kim, Hye-Jung;Chai, Gyu-Young;Lee, Sang-Wook;Lee, Kang-Kyoo;Chang, Ki-Churl;Choi, Byung-Ock;Jang, Hong-Seok;Jeong, Bea-Keon;Kang, Ki-Mun
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.242-248
    • /
    • 2007
  • Purpose: To study the effect of recombinant human epidermal growth factor (rhEGF) on oral mucositis induced by cisplatin and radiotherapy in a mouse model. Materials and Methods: Twenty-four ICR mice were divided into three groups-the normal control group, the no rhEGF group (treatment with cisplatin and radiation) and the rhEGF group (treatment with cisplatin, radiation and rhEGF). A model of mucositis induced by cisplatin and radiotherapy was established by injecting mice with cisplatin (10 mg/kg) on day 1 and with radiation exposure (5 Gy/day) to the head and neck on days $1{\sim}5$. rhEGF was administered subcutaneously on days -1 to 0 (1 mg/kg/day) and on days 3 to 5 (1 mg/kg/day). Evaluation included body weight, oral intake, and histology. Results: For the comparison of the change of body weight between the rhEGF group and the no rhEGF group, a statistically significant difference was observed in the rhEGF group for the 5 days after day 3 of. the experiment. The rhEGF group and no rhEGF group had reduced food intake until day 5 of the experiment, and then the mice demonstrated increased food intake after day 13 of the of experiment. When the histological examination was conducted on day 7 after treatment with cisplatin and radiation, the rhEGF group showed a focal cellular reaction in the epidermal layer of the mucosa, while the no rhEGF group did not show inflammation of the oral mucosa. Conclusion: These findings suggest that rhEGF has a potential to reduce the oral mucositis burden in mice after treatment with cisplatin and radiation. The optimal dose, number and timing of the administration of rhEGF require further investigation.

Epidermal Growth Factor Induces Vasoconstriction Through the Phosphatidylinositol 3-Kinase-Mediated Mitogen-Activated Protein Kinase Pathway in Hypertensive Rats

  • Kim, Jung-Hwan;Lee, Chang-Kwon;Park, Hyo-Jun;Kim, Hyo-Jin;So, Hyun-Ha;Lee, Keun-Sang;Lee, Hwan-Myung;Roh, Hui-Yul;Choi, Wahn-Soo;Park, Tae-Kyu;Kim, Bo-Kyung
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 2006
  • We investigated whether increased contractile responsiveness to epidermal growth factor (EGF) is associated with altered activation of mitogen-activated protein kinase (MAPK) in the aortic smooth muscle of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. EGF induced contraction and MAPK activity in aortic smooth muscle strips, which were significantly increased in tissues from the DOCA-salt hypertensive rats compared with those from sham-operated rats. AG1478, PD98059, and LY294002, inhibitors of EGF receptor (EGFR) tyrosine kinase, MAPK/extracellular signal-regulated kinase (ERK) kinase, and phosphatidylinositol 3-kinase (PI3K), respectively, inhibited the contraction and the activity of ERK1/2 that were elevated by EGF. Y27632 and GF109203X, inhibitors of Rho kinase and protein kinase C, respectively, attenuated EGF-induced contraction, with no diminution of ERK1/2 activity. Although EGF also elevated the activity of EGFR tyrosine kinase in both sham-operated and DOCA-salt hypertensive rats, the expression and the magnitude of activation did not differ between strips. These results strongly suggest that EGF induces contraction by the activation of ERK1/2, which is regulated by the PI3K pathway in the aortic smooth muscle of DOCA-salt hypertensive rats.

  • PDF