• Title/Summary/Keyword: Epidemic Models

Search Result 58, Processing Time 0.02 seconds

Epidemic Disease Spreading Simulation Model Based on Census Data (센서스 데이터를 기반으로 만든 전염병 전파 시뮬레이션 모델)

  • Hwang, Kyosang;Lee, Taesik;Lee, Hyunrok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Epidemic models are used to analyze the spreading of epidemic diseases, estimate public health needs, and assess the effectiveness of mitigation strategies. Modeling scope of an epidemic model ranges from the regional scale to national and global scale. Most of the epidemic models developed in Korea are at the national scale using the equation-based model. While these models are useful for designing and evaluating national public health policies, they do not provide sufficient details. As an alternative, individual-based models at the regional scale are often used to describe disease spreading, so that various mitigation strategies can be designed and tested. This paper presents an individual-based epidemic spreading model at regional scale. This model incorporates 2005 census data to build the synthetic population in the model representing Daejeon in 2005. The model's capability is demonstrated by an example where we assess the effectiveness of several mitigation strategies using the model.

Buffer Scheme Optimization of Epidemic Routing in Delay Tolerant Networks

  • Shen, Jian;Moh, Sangman;Chung, Ilyong;Sun, Xingming
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.656-666
    • /
    • 2014
  • In delay tolerant networks (DTNs), delay is inevitable; thus, making better use of buffer space to maximize the packet delivery rate is more important than delay reduction. In DTNs, epidemic routing is a well-known routing protocol. However, epidemic routing is very sensitive to buffer size. Once the buffer size in nodes is insufficient, the performance of epidemic routing will be drastically reduced. In this paper, we propose a buffer scheme to optimize the performance of epidemic routing on the basis of the Lagrangian and dual problem models. By using the proposed optimal buffer scheme, the packet delivery rate in epidemic routing is considerably improved. Our simulation results show that epidemic routing with the proposed optimal buffer scheme outperforms the original epidemic routing in terms of packet delivery rate and average end-to-end delay. It is worth noting that the improved epidemic routing needs much less buffer size compared to that of the original epidemic routing for ensuring the same packet delivery rate. In particular, even though the buffer size is very small (e.g., 50), the packet delivery rate in epidemic routing with the proposed optimal buffer scheme is still 95.8%, which can satisfy general communication demand.

A Preliminary Study of the Transmission Dynamics of HIV Infection and AIDS (HIV 감염과 AIDS의 전파 특성에 관한 기초적 연구)

  • 정형환;이광우
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.295-304
    • /
    • 1994
  • This paper describes some preliminary attempts to formulate simple mathematical models of the transmission dynamics of HIV infection in homosexual communities. In conjunction with a survey of the available epidemiological data on HIV infection and the incidence of AIDS, the model is used to assess how various processes influence the course of the initial epidemic following the introduction of the virus. Models of the early stages of viral spread provide crude methods for estimating the basic reproductive rate of the virus, given a knowledge of the incubation period of AIDS and the initial doubling time of the epidemic. More complex models are formulated to assess the influence of heterogeneity in sexual activity. This latter factor is shown to have a major effect on the predicted pattern of the epidemic.

  • PDF

Research on Application of SIR-based Prediction Model According to the Progress of COVID-19 (코로나-19 진행에 따른 SIR 기반 예측모형적용 연구)

  • Hoon Kim;Sang Sup Cho;Dong Woo Chae
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Predicting the spread of COVID-19 remains a challenge due to the complexity of the disease and its evolving nature. This study presents an integrated approach using the classic SIR model for infectious diseases, enhanced by the chemical master equation (CME). We employ a Monte Carlo method (SSA) to solve the model, revealing unique aspects of the SARS-CoV-2 virus transmission. The study, a first of its kind in Korea, adopts a step-by-step and complementary approach to model prediction. It starts by analyzing the epidemic's trajectory at local government levels using both basic and stochastic SIR models. These models capture the impact of public health policies on the epidemic's dynamics. Further, the study extends its scope from a single-infected individual model to a more comprehensive model that accounts for multiple infections using the jump SIR prediction model. The practical application of this approach involves applying these layered and complementary SIR models to forecast the course of the COVID-19 epidemic in small to medium-sized local governments, particularly in Gangnam-gu, Seoul. The results from these models are then compared and analyzed.

Introduction of Phylodynamics for Controlling the HIV/AIDS Epidemic in Korea

  • Bae, Jong-Myon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.51 no.6
    • /
    • pp.326-328
    • /
    • 2018
  • As over 1000 new cases of HIV/AIDS occur in Korea annually, preventive health programs against HIV/AIDS are urgently needed. Since phylodynamic studies have been suggested as a way to understand how infectious diseases are transmitted and evolve, phylodynamic inferences can be a useful tool for HIV/AIDS research. In particular, phylodynamic models are helpful for dating the origins of an epidemic and estimating its basic reproduction number. Thus, the introduction of phylodynamics would be a highly valuable step towards controlling the HIV/AIDS epidemic in Korea.

An empirical analysis of the factors influencing Chinese consumers' willingness to purchase organic agricultural products before and after the COVID-19 epidemic through the application of planned behavior (계획행동이론을 적용한 COVID-19 전후 중국 소비자의 유기농 농산물 구매의향에 영향을 미치는 요인에 관한 실증분석)

  • Xu Kai;Woohyoung Kim;Yongseok Cho
    • Korea Trade Review
    • /
    • v.47 no.3
    • /
    • pp.37-55
    • /
    • 2022
  • This paper takes the factors influencing consumers' purchase of organic agricultural products before and after the COVID-19 epidemic as the starting point, decomposes Chinese consumers' purchase behavior of organic agricultural products into questionnaire surveys before and after the COVID-19 epidemic with the help of the theory of planned behavior, and builds structural equation regression models to compare and analyze them respectively. The study investigates whether this change has any impact on consumers' purchasing behavior of organic agricultural products, and proposes rationalized countermeasures from different perspectives based on the results of the study. To this end, this study collected 219 valid questionnaires by combing through domestic and international literature and referring to scholars' mature scales for measurement. The results showed that consumers' attitudes, subjective norms and perceptual behavioral control of organic agricultural products before and after the COVID-19 epidemic had a significant positive effect on consumers' willingness to purchase; however, it can be seen that the intervention of the COVID-19 epidemic event has significantly improved consumers' attitudes, subjective norms and perceptual behavioral control of organic agricultural products.

DYNAMICS OF AN IMPROVED SIS EPIDEMIC MODEL

  • Reza Memarbashi;Milad Tahavor
    • The Pure and Applied Mathematics
    • /
    • v.30 no.2
    • /
    • pp.203-220
    • /
    • 2023
  • A new modification of the SIS epidemic model incorporating the adaptive host behavior is proposed. Unlike the common situation in most epidemic models, this system has two disease-free equilibrium points, and we were able to prove that as the basic reproduction number approaches the threshold of 1, these two points merge and a Bogdanov-Takens bifurcation of codimension three occurs. The occurrence of this bifurcation is a sign of the complexity of the dynamics of the system near the value 1 of basic reproduction number. Both local and global stability of disease-free and endemic equilibrium point are studied.

System Dynamics Approach to Epidemic Compartment Model: Translating SEIR Model for MERS Transmission in South Korea (전염병 구획 모형에 대한 시스템다이내믹스 접근법: 국내 MERS 전염 SEIR 모형의 해석 및 변환)

  • Jung, Jae Un
    • Journal of Digital Convergence
    • /
    • v.16 no.7
    • /
    • pp.259-265
    • /
    • 2018
  • Compartment models, a type of mathematical model, have been widely applied to characterize the changes in a dynamic system with sequential events or processes, such as the spread of an epidemic disease. A compartment model comprises compartments, and the relations between compartments are depicted as boxes and arrows. This principle is similar to that of the system dynamics (SD) approach to constructing a simulation model with stocks and flows. In addition, both models are structured using differential equations. With this mutual and translatable principle, this study, in terms of SD, translates a reference SEIR model, which was developed in a recent study to characterize the transmission of the Middle East respiratory syndrome (MERS) in South Korea. Compared to the replicated result of the reference SEIR model (Model 1), the translated SEIR model (Model 2) demonstrates the same simulation result (error=0). The results of this study provide insight into the application of SD relative to constructing an epidemic compartment model using schematization and differential equations. The translated SD artifact can be used as a reference model for other epidemic diseases.

THE DOMAIN OF ATTRACTION FOR A SEIR EPIDEMIC MODEL BASED ON SUM OF SQUARE OPTIMIZATION

  • Chen, Xiangyong;Li, Chunji;Lu, Jufang;Jing, Yuanwei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.517-528
    • /
    • 2012
  • This paper is estimating the domain of attraction for a class of susceptible-exposed-infectious-recovered (SEIR) epidemic dynamic models by using sum of squares optimization. First, the stability is analyzed for the equilibriums of SEIR model, and the domain of attraction in the endemic equilibrium is estimated by using sum of squares optimization. Finally, a numerical example is examined.

MATHEMATICAL ANALYSIS OF AN "SIR" EPIDEMIC MODEL IN A CONTINUOUS REACTOR - DETERMINISTIC AND PROBABILISTIC APPROACHES

  • El Hajji, Miled;Sayari, Sayed;Zaghdani, Abdelhamid
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.45-67
    • /
    • 2021
  • In this paper, a mathematical dynamical system involving both deterministic (with or without delay) and stochastic "SIR" epidemic model with nonlinear incidence rate in a continuous reactor is considered. A profound qualitative analysis is given. It is proved that, for both deterministic models, if ��d > 1, then the endemic equilibrium is globally asymptotically stable. However, if ��d ≤ 1, then the disease-free equilibrium is globally asymptotically stable. Concerning the stochastic model, the Feller's test combined with the canonical probability method were used in order to conclude on the long-time dynamics of the stochastic model. The results improve and extend the results obtained for the deterministic model in its both forms. It is proved that if ��s > 1, the disease is stochastically permanent with full probability. However, if ��s ≤ 1, then the disease dies out with full probability. Finally, some numerical tests are done in order to validate the obtained results.