• Title/Summary/Keyword: Epac

Search Result 4, Processing Time 0.022 seconds

Epac: new emerging cAMP-binding protein

  • Lee, Kyungmin
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.149-156
    • /
    • 2021
  • The well-known second messenger cyclic adenosine monophosphate (cAMP) regulates the morphology and physiology of neurons and thus higher cognitive brain functions. The discovery of exchange protein activated by cAMP (Epac) as a guanine nucleotide exchange factor for Rap GTPases has shed light on protein kinase A (PKA)-independent functions of cAMP signaling in neural tissues. Studies of cAMP-Epac-mediated signaling in neurons under normal and disease conditions also revealed its diverse contributions to neurodevelopment, synaptic remodeling, and neurotransmitter release, as well as learning, memory, and emotion. In this mini-review, the various roles of Epac isoforms, including Epac1 and Epac2, highly expressed in neural tissues are summarized, and controversies or issues are highlighted that need to be resolved to uncover the critical functions of Epac in neural tissues and the potential for a new therapeutic target of mental disorders.

Epac2a-knockout mice are resistant to dexamethasone-induced skeletal muscle atrophy and short-term cold stress

  • Song, Seung-Eun;Shin, Su-Kyung;Park, So-Young;Hwang, Il-Seon;Im, Seung-Soon;Bae, Jae-Hoon;Choi, Myung-Sook;Song, Dae-Kyu
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.39-44
    • /
    • 2018
  • Exchange protein directly activated by cAMP (Epac) 2a-knockout (KO) mice exhibit accelerated diet-induced obesity and are resistant to leptin-mediated adipostatic signaling from the hypothalamus to adipose tissue, with sustained food intake. However, the impact of Epac2a deficiency on hypothalamic regulation of sympathetic nervous activity (SNA) has not been elucidated. This study was performed to elucidate the response of Epac2a-KO mice to dexamethasone-induced muscle atrophy and acute cold stress. Compared to age-matched wild-type mice, Epac2a-KO mice showed higher energy expenditures and expression of myogenin and uncoupling protein-1 in skeletal muscle (SM) and brown adipose tissue (BAT), respectively. Epac2a-KO mice exhibited greater endurance to dexamethasone and cold stress. In wild-type mice, exogenous leptin mimicked the responses observed in Epac2a-KO mice. This suggests that leptin-mediated hypothalamic signaling toward SNA appears to be intact in these mice. Hence, the potentiated responses of SM and BAT may be due to their high plasma leptin levels.

Epac2 contributes to PACAP-induced astrocytic differentiation through calcium ion influx in neural precursor cells

  • Seo, Hyunhyo;Lee, Kyungmin
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.128-133
    • /
    • 2016
  • Astrocytes play a critical role in normal brain functions and maintaining the brain microenvironment, and defects in astrocytogenesis during neurodevelopment could give rise to severe mental illness and psychiatric disorders. During neuro-embryogenesis, astrocytogenesis involves astrocytic differentiation of neural precursor cells (NPCs) induced by signals from ciliary neurotrophic factor (CNTF) or pituitary adenylate cyclase-activating peptide (PACAP). However, in contrast to the CNTF signaling pathway, the exact mechanism underlying astrocytic differentiation induced by PACAP is unknown. In the present study, we aimed to verify a signaling pathway specific to PACAP-induced astrocytogenesis, using exchange protein directly activated by cAMP2 (Epac2)-knockout mice. We found that PACAP could trigger astrocytic differentiation of NPCs via Epac2 activation and an increase in the intracellular calcium concentration via a calcium ion influx. Taken together, we concluded that astrocytogenesis stimulated by PACAP occurs through a novel signaling pathway independent from CNTF-JAK/STAT signaling, that is the well-known pathway of astrocytogenesis.

Glucose-dependent insulinotropic polypeptide (GIP) alleviates ferroptosis in aging-induced brain damage through the Epac/Rap1 signaling pathway

  • Jiwon Ko;Soyoung Jang;Soyeon Jang;Song Park;Junkoo Yi;Dong Kyu Choi;Seonggon Kim;Myoung Ok Kim;Su-Geun Lim;Zae Young Ryoo
    • BMB Reports
    • /
    • v.57 no.9
    • /
    • pp.417-423
    • /
    • 2024
  • Glucose-dependent insulinotropic polypeptide (GIP), a 42-amino-acid hormone, exerts multifaceted effects in physiology, most notably in metabolism, obesity, and inflammation. Its significance extends to neuroprotection, promoting neuronal proliferation, maintaining physiological homeostasis, and inhibiting cell death, all of which play a crucial role in the context of neurodegenerative diseases. Through intricate signaling pathways involving its cognate receptor (GIPR), a member of the G protein-coupled receptors, GIP maintains cellular homeostasis and regulates a defense system against ferroptosis, an essential process in aging. Our study, utilizing GIP-overexpressing mice and in vitro cell model, elucidates the pivotal role of GIP in preserving neuronal integrity and combating age-related damage, primarily through the Epac/Rap1 pathway. These findings shed light on the potential of GIP as a therapeutic target for the pathogenesis of ferroptosis in neurodegenerative diseases and aging.