• Title/Summary/Keyword: Eoil basin

Search Result 9, Processing Time 0.02 seconds

Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks (포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代))

  • Lee, Hyun Koo;Moon, Hi-Soo;Min, Kyung Duck;Kim, In-Soo;Yun, Hyesu;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF

Formation and Evolution of the Miocene Ipcheon Subbasin in Yangbuk-myeon, Gyeongju, SE Korea (한반도 남동부 경주시 양북면 마이오세 입천소분지의 형성과 발달사)

  • Seong, Changhun;Cheon, Youngbeom;Son, Moon;Sohn, Young Kwan;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.19-34
    • /
    • 2013
  • The Ipcheon Subbasin is an isolated Miocene basin in SE Korea, which has the geometry of an asymmetric graben elongated in the NE-SW direction. It is in contact with basement rocks by faults and separated from adjacent Waup and Eoil basins by the basement. The strata of the basin fills have an overall homoclinal structure, dipping toward NW or WNW. The basin fills consist of Early Miocene sediments rich in dacitic volcanic and volcaniclastic deposits and Middle Miocene non-volcanic and nonmarine conglomerates intercalated with sand layers, which are distributed in the northeastern and southwestern parts of the basin, respectively. Kinematic analysis of syndepositional conjugate faults in the basin fills indicates WNW-ESE extension of the basin. These features are very similar to those of the adjacent Waup and Eoil basins, indicating that the basin extension was governed by the NE-trending northwestern border faults and that the basin experienced a propagating rifting from NE to SW. Basaltic materials, which occur abundantly in the Eoil Basin, are totally absent in the Ipcheon Subbasin. The observations of the dacitic tuff and tuffaceous mudstone in the subbasin, on slabs and under microscope, suggest that they have lithologies very similar to those of the Yondongri Tuff in the Waup Basin. The Middle Miocene non-volcanic sediments of the Waup and Eoil basins and the Ipcheon Subbasin are distributed consistently in the southwestern part of each basin. It is thus concluded that the extension of the Ipcheon Subbasin began at about 22 Ma together with the Waup Basin and was lulled during the main extension period of the Eoil Basin between 20-18 Ma. At about 17 Ma, the subbasin was re-extended due to the activation of the Yeonil Tectonic Line associated with the propagating rifting toward SW. This event is interpreted to have provided new sedimentation space for the Middle Miocene sediments in the southwestern parts of the Waup and Eoil basins and the Ipcheon Subbasin as well.

Tectonics of the Tertiary Eoil and Waeup basins in the southeastern part of Korea (한반도 동남부 제3기 어일분지 및 와읍분지의 지구조 운동)

  • Chang, Tae-Woo;Jeong, Jae-Hyok;Chang, Chun-Joong
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.27-40
    • /
    • 2007
  • Stratigraphy has been renewedly set up and the evolution of tectonic events related to basin formation has been exam-ined on the basis of fault-slip data analysis in the Tertiary Eoil and Waeup basins of the southeastern part of Korea. First of all, field mapping was carried out in detail for Tertiary formations and then paleostress analysis were peformed with more than 400 fault slip data collected from 11 sites in the Tertiary formations and the Yucheon Group. It is judged that both the Eoil and Waeup basins filled up with Tertiary deposits might be simultaneously formed in separate locations. The Janggi Group in the Eoil basin is divided into following stratigraphic units in ascending order: Gampo Conglomerte, Hongdeok Basalt, Nodongri Conglomerate and Yeondang Basalt, and the Bomkori Group in the Waeup basin: Waeupri Tuff; Andongri Conglomerate, Yongdongri Tuff and Hoamri Volcanic Breccia. Paleostress analysis by using striated faults reveals five sequential tectonic events: (1) NW-SE transtension (event I), (2) NW-SE transpression (event IIl), (3) NE-SW pure extension (event III), (4) N-S transpression (event IV) and (5) E-W pure compression (event V). Therefore, five sequential tectonic movements are closely associated with the formation and evolution of the Tertiary basins in the study area: tectonic event I of NW-SE extension is related to formation of the Tertiary basins during the late Oligocene to the Early Miocene, tectonic events II, III and IV caused the termination of the Tertiary basin opening and the crustal uplift in the study area, and tectonic event V upheaved the east coast or Korean Peninsula with compressive stress due to intense subduction of the Pacific plate into Asian continent since the Early Pliocene.

Petrography of the Miocene Volcanic Rocks of the Eoil Basin, Southeastern Part of Korean Peninsula (한반도 남동부 어일분지의 마이오세 화산암의 암석기재적 연구)

  • 이정현;윤성효;고정선
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.64-80
    • /
    • 2004
  • The Miocene volcanic rocks in the Eoil Basin, which is one of the pull-apart basins in the southeastern Korean Peninsula, are bimodal in composition: felsic (67.2-70.5wt.% SiO$_2$) and mafic(49.3-55.2wt.% SiO$_2$). The bimodal volcanic activities in the basin appear to be closely associated with the basin development. The volcanic rocks are intercalated with thick Files of sedimentary sequence. They show evidence of magma mixing. which has produced mafic and felsic volcanic rocks. We are able to identify the petrographic characteristics (disequilibrium phenocryst assemblages) of the volcanic rocks that were mixed. In basaltic lava, phenocrysts of olivine and orthopyroxene coexist with corroded quartz phenocryst. Dacitic to rhyolitic welded ash-flow tuff contains phenocrysts of clinopyroxene and orthopyroxene. It suggests that phenocryst disequilibrium have been affected and mixed by magmas, which have different compositions.

A Nested Cauldron Structure in the Tertiary Miocene Eoil Basin, Southeastern Korea (한반도 동남부 제3기 마이오세 어일분지내 둥지형 화산함몰구조)

  • Son, Moon;Kim, In-Soo;Ock, Soo-Seok
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.121-131
    • /
    • 2001
  • The combination of geological, structural and satellite image studies is used to make an examination of the Miocene eruptive type in the Eoil Basin, SE Korea. The basin subsided by the NW-SE extension due to NNW dextral shearing during the East Sea opening. Based on geological structures as well as lithofacies and ages of the basin-fills, it is divided into the NE subbasin and the SW subbasin which were abundantly filled with basaltic volcanics and marine sediments without volcanic materials, respectively: Syndeposional synclines and anticlines are characteristically developed in the NE subbasin, which amplitudes decrease away from the adjacent normal faults to make them into a homoclinal structure. The thicker lavas as well as the younger agglomerates and lacustrine sediments, which show circular distributions, are distributed around the axial zones of major synclines. The satellite image shows four remarkable circular structures within the NE subbasin. They are located adjacent to and along the normal faults, and they are laid almost exactly on the axial zones of the synclines as well as on the distribution area of the agglomerates and lacustrine sediments. These facts indicate that the basaltic lava effusion were conducted by the normal faults like a kind of fissure-eruption and its activity was more predominant at the sites in where the synclines are developed. More active effusion of lava became a reason for deeper subsidence to make differential subsidence and syndepositional folding adjacent to and along the normal faults. Hence, we suggest that a nested cauldron structure was formed in the NE subbasin of the Eoil Basin, and that the volcanism made the subbasin to be a lava pond and controlled the process of filling and sedimentation in the subbasin.

  • PDF

Petrology of the Tertiary Basaltic Rocks in the Yeonil and Eoil Basins, Southeastern Korea (한반도 동남부 제3기 연일, 어일분지에 나타나는 현무암질암의 암석학적 연구)

  • Shim, Sung-Ho;Park, Byeong-Jun;Kim, Tae-Hyeong;Jang, Yun-Deuk;Kim, Jung-Hoon;Kim, Jeong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-21
    • /
    • 2011
  • Eoil basalt in the Eoil basin and Yeonil basalt and its related volcanic rocks in Guryongpo and Daebo area were researched and analyzed to purse the tectonic settings and magma characteristics of those Tertiary volcanic rocks in the south-east Korean peninsula. It is highly suggested that zoning, resorption and sieve texture in plagioclase and reaction rim in pyroxene indicate unstable tectonic environments and complex volcanism in the study area. Volcanic rocks from Janggi basin are identified as basalt and basaltic andesite in TAS diagram and sub-alkaline series in terms of magma differentiation. $Na_2O$ and $K_2O$ show positive trend however FeO, CaO, MgO and $P_2O_5$ indicate negative trend in Harker variation diagram with $SiO_2$. Basaltic rocks from Eoil area are identified as calc-alkaline series in AFM diagram and show medium K series calc-alkaline in $K_2O-SiO_2$ diagram. Compatible trace elements of Co, Ni, V, Zn, and Sc in Yeonil basalt show negative trend with crystallization but incompatible trace element of Ba, Rb show positive trend with $SiO_2$ 0.81~1.00 of $Eu/Eu^*$ value suggests minor effect of plagioclase fractionation in Yeonil basaltic rocks. Plagioclase composition of Eoil basalt ranges from $An_{63.46-98.38}\;Ab_{1.62-32.96}\;Or_{0-3.58}$ (anorthite-labradorite) in core to $An_{40.89-82.44}\;Ab_{17.10-46.43}\;Or_{0-12.68}$ (bytownite-labradorite) in rim. $^{87}Sr/^{86}Sr$ and 143Nd;t44Nd ranges 0.704090~0.704717 and 0.512705~0.512822 respectively. Negative linear trends in 87Sr/86Sr and $^{143}Nd/^{144}Nd$ correlation diagram indicate that magma produced Yeonil basalt and basaltic andesite has been originated as partial melting product of mantle wedge by subducting Pacific plate affected by oceanic crust with less effect of continental crust indicating calc-alkaline magma characteristics.

Revised Fission-track Ages and Chronostratigraphies of the Miocene Basin-fill Volcanics and Basements, SE Korea (한국 동남부 마이오세 분지 화산암과 기반암의 피션트랙 연대 재검토와 연대층서 고찰)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.83-115
    • /
    • 2013
  • Erroneous fission-track (FT) ages caused by an inappropriate calibration in the initial stage of FT dating were redefined by re-experiments and zeta calibration using duplicate samples. Revised FT zircon ages newly define the formation ages of Yucheon Group rhyolitic-dacitic tuffs as Late Cretaceous to Early Paleocene ($78{\pm}4$ Ma to $65{\pm}2$ Ma) and Gokgangdong rhyolitic tuff as Early Eocene ($52.1{\pm}2.3$ Ma). In case of the Early Miocene volcanics, FT zircon ages from a dacitic tuff of the upper Hyodongri Volcanics ($21.6{\pm}1.4$ Ma) and a dacitic lava of the uppermost Beomgokri Volcanics ($21.3{\pm}2.0$ Ma) define chronostratigraphies of the upper Beomgokri Group, respectively in the southern Eoil Basin and in the Waeup Basin. A FT zircon age ($19.8{\pm}1.6$ Ma) from the Geumori dacitic tuff defines the time of later dacitic eruption in the Janggi Basin. Based on FT zircon ages for dacitic rocks and previous age data (mostly K-Ar whole-rock, partly Ar-Ar) for basaltic-andesitic rocks, reference ages are recommended as guides for stratigraphic correlations of the Miocene volcanics and basements in SE Korea. The times of accumulation of basin-fill sediments are also deduced from ages of related volcanics. Recommended reference ages are well matched to the whole stratigraphic sequences despite complicated basin structures and a relative short time-span. The Beomgokri Group evidently predates the Janggi Group in the Eoil-Waeup basins, while it is placed at an overlapped time-level along with the earlier Janggi Group in the Janggi Basin. Therefore, the two groups cannot be uniformly defined in a sequential order. The Janggi Group of the Janggi Basin can be evidently subdivided by ca. 20 Ma-basis into two parts, i.e., the earlier (23-20 Ma) andesitic-dacitic and later (20-18 Ma) basaltic strata.

Paleomagnetic Study on the Tertiary Rocks in Pohang Area (포항일원에 분포하는 제3기 암류에 대한 고지자기 연구)

  • Min, Kyung Duck;Kim, Won Kyun;Lee, Dae Ha;Lee, Youn Soo;Kim, In Su;Lee, Young-Hoon
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.49-63
    • /
    • 1994
  • Paleomagnetic study of Tertiary rocks in Pohang area has been carried out to determine the characteristic directon of natural remanent magnetization, the position of paleomagnetic pole, the stratigraphic correlation, and the tectonic movement. A total of 196 specimens was collected from 5 sites in the Pohang Basin, 19 sites in the Janggi Basin, and 10 sites in the Eoil Basin, respectively. The mean declination and inclination of 4 sites (3 sites in the Yonil Group and 1 site in the Yonil Basalt) are $-3.2^{\circ}$ and $54.3^{\circ}$, and yield the paleomagnetic pole position $86.9^{\circ}N$ and $7.7^{\circ}E$. These are the characteristic direction and pole position of Miocene Epoch by comparison with contemporary Eurasian and Chinese data. The characteristic direction and pole position of remaining 30 sites are $47.6^{\circ}$ and $57.5^{\circ}$, and $52.3^{\circ}N$ and $201.5^{\circ}E$, respectively. These show clockwise rotation of $50.8^{\circ}$ with respect to the Miocene ones resulted by a tectonic movement before the deposition of the Hakjeon Formation of the Yonil Group about 15~16 Ma in the study area. The mechanism of the clockwise rotation is considered to be the dextral movement of the Yangsan Fault presumably caused by the opening of the East Sea. The Yonil Basalt is reclassified into pre- and post-deposition of the Yonil Group, i.e. the former is early Miocene and the latter late Miocene.

  • PDF

Gravity Field Interpretation for the Deep Geological Structure Analysis in Pohang-Ulsan, Southeastern Korean Peninsula (한반도 남동부 포항-울산지역 심부 지질구조 분석을 위한 중력장 해석)

  • Sohn, Yujin;Choi, Sungchan;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.597-608
    • /
    • 2020
  • Even after the Gyeongju earthquake and the Pohang earthquake, hundreds of aftershocks and micro-earthquakes are still occurring in the southeastern part of the Korean Peninsula. These phenomena mean that the stress is constantly working, implying that another huge earthquake may occur in the future. Therefore, the gravity field interpretation method was used to analyze the deep geological structure of the Pohang-Ulsan region in the southeastern Korean Peninsula. First, a gravity survey was performed to collect the insufficient data and to calculate the detailed Bouguer gravity anomaly in the study area. Based on the gravity anomaly data, the location, direction, and maximum depth of deep fault lines were analyzed using the inversion methods "Curvature analysis" and "Euler deconvolution method". As a result, it is interpreted that at least six fault lines(C1~C6) exist in deep depth. The deep fault line C1 is well correlated to the Yeonil Tectonic Line(YTL), suggesting that YTL is extended up to about 4000m deep. The deep fault line C2 consists of several segment faults and well correlated to the fault lines on the surface. Inferred fault lines C3, C4, and C5 have an NW-SE direction, which is parallel to the Ulsan fault. The deep fault line C6 has the direction of NE-SW, and it is interpreted that the eastern boundary fault of Eoil Basin is extended to the deep. Comparing the inferred fault lines with the distribution of micro-earthquakes, the location of the deep fault line C1 is well correlated to the hypocenter of micro-earthquakes. This implies that faults in deep depth are related to the recent earthquakes in the southeastern Korean Peninsula.