• Title/Summary/Keyword: Enzyme-Amplification

Search Result 114, Processing Time 0.025 seconds

Association Study between Vitamin D Receptor Gene Polymorphism and Adult Periodontitis in Korea

  • Kang, Byung-Yong;Ha, Nam-Joo
    • Animal cells and systems
    • /
    • v.7 no.2
    • /
    • pp.145-149
    • /
    • 2003
  • Adult periodontitis is a chronic inflammatory disease whose etiology is not well defined. Recent studies have shown that vitamin D receptor gene has been a candidate for the susceptibility of adult periodontitis. The purpose of this study is to investigate the frequency of Taq I restriction fragment length polymorphism (RFLP) in the vitamin D receptor gene in nan periodontically healthy controls and 28 adult periodontitis patients. Taq I RFLP in the vitamin D receptor gene was detected by PCR amplification, followed by restriction enzyme digestion and 2% agarose gel electrophoresis. There was no significant difference in the distribution of Taq I RFLP between healthy controls and adult periodontitis group (P > 0.05). Thus, Taq I RFLP in the vitamin D receptor gene may not confer the susceptibility to adult periodontitis in Korean population. However, t allele distributions of this RFLP showed various frequencies among ethnic groups studied. Further studies in other ethnic groups will be required.

Techniques for Evaluation of LAMP Amplicons and their Applications in Molecular Biology

  • Esmatabadi, Mohammad javad Dehghan;Bozorgmehr, Ali;zadeh, Hesam Motaleb;Bodaghabadi, Narges;Farhangi, Baharak;Babashah, Sadegh;Sadeghizadeh, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7409-7414
    • /
    • 2015
  • Loop-mediated isothermal amplification (LAMP) developed by Notomi et al. (2000) has made it possible to amplify DNA with high specificity, efficiency and rapidity under isothermal conditions. The ultimate products of LAMP are stem-loop structures with several inverted repeats of the target sequence and cauliflower-like patterns with multiple loops shaped by annealing between every other inverted repeats of the amplified target in the similar strand. Because the amplification process in LAMP is achieved by using four to six distinct primers, it is expected to amplify the target region with high selectivity. However, evaluation of reaction accuracy or quantitative inspection make it necessary to append other procedures to scrutinize the amplified products. Hitherto, various techniques such as turbidity assessment in the reaction vessel, post-reaction agarose gel electrophoresis, use of intercalating fluorescent dyes, real-time turbidimetry, addition of cationic polymers to the reaction mixture, polyacrylamide gel-based microchambers, lateral flow dipsticks, fluorescence resonance energy transfer (FRET), enzyme-linked immunosorbent assays and nanoparticle-based colorimetric tests have been utilized for this purpose. In this paper, we reviewed the best-known techniques for evaluation of LAMP amplicons and their applications in molecular biology beside their advantages and deficiencies. Regarding the properties of each technique, the development of innovative prompt, cost-effective and precise molecular detection methods for application in the broad field of cancer research may be feasible.

PCR technique for detection of toxigenic Pasteurella multocida in mixed bacterial cultures from pigs (Polymerase chain reaction을 이용한 독소생산성 Pasteurella multocida의 검출)

  • Chi, Yongzhe;Lee, Dong-seok;Han, Jeong-hee;Han, Kyung-soo;Hahn, Tae-wook
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.1
    • /
    • pp.56-62
    • /
    • 2000
  • Pasteurella multocida is kind of commensal bacteria in the upper respiratory tract of pigs. It is classified toxigenic and nontoxigenic strains based on the production of dermonecrotic toxin. Toxigenic strain is most associated with atrophic rhinitis which brings great economical loss in swine industry. However, toxigenic and nontoxigenic strains do not differ by diagnostic biochemical reaction or morphology. One of recently developed techniques, PCR detects the toxigenic P multocida. Amplification of an 846-nucleotide fragment of toxA gene was developed. The fragment amplified by PCR was detected in P multocida type D not type A. The PCR amplification was as sensitive as it could detect 1 pg of P multocida DNA. We compared the result of the PCR with the enzyme linked immunosorbent assay (ELISA) in a test for 40 swine nasal swabs. All of these isolates were toxin negative based on the ELISA while 2 isolates were detected in the PCR technique. in addition to accuracy, as required for rapid detection from contaminated nasal swabs, toxigenic P multocida was recovered efficiently from contaminated culture without inhibition of the PCR. The results show that the PCR detection of toxigenic P multocida directly form nasal swabs are feasible.

  • PDF

Detection for Methicillin Resistant Staphylococcus aureus in Using Bio-Chip Based Loop Mediated Isothermal Amplification Assay (칩 기반 등온증폭법을 이용한 약제 내성 포도상구균의 검출)

  • Cho, Min-Ho;Jang, Won-Cheoul;Choi, Jae-Gu
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.81-87
    • /
    • 2013
  • Staphylococcus aureus is the most important pathogen in nosocomial infections, including bloodstream infections. Prompt identification of S. aureus from blood cultures and detection of methicillin resistance are essential in cases of suspected sepsis. We have studied a new method for the sequence-specific visual detection of minute amounts of nucleic acids using intercalating reaction by addition of SYBR Green to amplicons of LAMP, and it's a unique gene amplification method in which DNA can be isothermally amplified using only one enzyme. Staphylococcus-LAMP, which targets the spa gene, encoding S.aureus-specific protein A, and the mecA gene, encoding penicillin-binding protein-2' for methicillin resistance, detected MRSA and MRSE. In this study, by using LAMP assay, I detected for Staphylococcus aureus and Staphylococcus epidermidis concentration in the clinical sample. The detection of Staphylococcus aureus and Staphylococcus epidermidis was tested by using serial 10-fold dilutions standard solution. I have accurate detected the limit of detection, sensitity, specificity and reproducibility of the assay. The Bio-chip based LAMP assay allowed easy, rapid, accurate and sensitive detection of infection with Staphylococcus and especially applicable in a resource-limited situation.

Isolation and Characterization of a Gene Encoding Hexokinase from Loquat (Eriobotrya japonica Lindl.)

  • Qin, Qiaoping;Zhang, Lanlan;Xu, Kai;Jiang, Li;Cheng, Longjun;Xu, Chuanmei;Cui, Yongyi
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.243-249
    • /
    • 2012
  • Hexokinase is the first enzyme in the hexose assimilation pathway; it acts as a sensor for plant sugar responses, and it is also important in determining the fruit sugar levels. The full-length cDNA of a hexokinase gene was isolated from loquat through reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends, which was designated as EjHXK1. EjHXK1 is 1,839 bp long and contains an entire open reading frame encoding 497 amino acids. The predicted protein of EjHXK1 shares 72%-81% similarity with other plant hexokinases. Phylogeny analysis indicated that EjHXK1 is closely related to maize and rice hexokinases. Transient expression of the 35S: EjHXK1-GFP fusion protein was observed on the cell membrane and cytoplasm. Real-time RT-PCR indicated that EjHXK1 is expressed in loquat leaves, stems, flowers, and fruits. EjHXK1 transcripts were higher during early fruit development, but decreases before maturation, which is consistent with hexokinase enzyme activity during fruit development and conducive for hexose accumulation in mature fruits. These results imply that EjHXK1 may play important roles in the regulation of sugar flux during fruit ripening.

Na+/K+-ATPase Alpha Subunit in the Monogonont Rotifer, Brachionus koreanus: Molecular Cloning and Response to Different Salinity

  • Kim, Hokyun;Lim, Bora;Kim, Byung-Do;Lee, Young-Mi
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.97-106
    • /
    • 2016
  • $Na^+/K^+$-ATPase is a membrane protein and plays a key role in osmotic regulation in living organisms. In the present study, a cDNA sequence encoding the $Na^+/K^+$-ATPase alpha subunit from the monogonont rotifer, Brachionus koreanus was cloned by rapid amplification of cDNA ends technique. To investigate the role of this enzyme in osmotic stress, enzymatic activities of $Na^+/K^+$-ATPase were measured after exposure to different salinities for 48 h. The full-length Bk $Na^+/K^+$-ATPase cDNA was 3069 bp-long, encoding a 1022-amino acid polypeptide. Bk $Na^+/K^+$-ATPase possesses eight membrane spanning regions and five conserved domains. Phylogenetic analysis showed that Bk $Na^+/K^+$-ATPase had high identity with those of other species, and was closely clustered with other Brachionus sp. These findings indicate that this protein was conserved both structurally and functionally. B. koreanus $Na^+/K^+$-ATPase activity was stimulated in both hyposaline (6 psu) and hypersaline (32 psu) conditions, suggesting that this protein may play a role in osmoregulation. This study would provide better understanding of the physiology of B. koreanus and this enzyme may be useful as a molecular marker for evaluation of osmotic stress in aquatic environment.

Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis

  • Erwanto, Yuny;Abidin, Mohammad Zainal;Muslim, Eko Yasin Prasetyo;Sugiyono, Sugiyono;Rohman, Abdul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1487-1492
    • /
    • 2014
  • This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment.

BRD7 Promoter Hypermethylation as an Indicator of Well Differentiated Oral Squamous Cell Carcinomas

  • Balasubramanian, Anandh;Subramaniam, Ramkumar;Narayanan, Vivek;Annamalai, Thangavelu;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1615-1619
    • /
    • 2015
  • Background: Promoter hypermethylation mediated gene silencing of tumor suppressor genes is considered as most frequent mechanism than genetic aberrations such as mutations in the development of cancers. BRD7 is a single bromodomain containing protein that functions as a subunit of SWI/SNF chromatin-remodeling complex to regulate transcription. It also interacts with the well know tumor suppressor protein p53 to trans-activate genes involved in cell cycle arrest. Loss of expression of BRD7 has been observed in breast cancers and nasopharyngeal carcinomas due to promoter hypermethylation. However, the genetic status of BRD7 in oral squamous cell carcinomas (OSCCs) is not known, although OSCC is one of the most common among all reported cancers in the Indian population. Hence, in the present study we investigated OSCC samples to determine the occurrence of hypermethylation in the promoter region of BRD7 and understand its prevalence. Materials and Methods: Genomic DNA extracted from biopsy tissues of twenty three oral squamous cell carcinomas were digested with methylation sensitive HpaII type2 restriction enzyme that recognizes and cuts unmethylated CCGG motifs. The digested DNA samples were amplified with primers flanking the CCGG motifs in promoter region of BRD7 gene. The PCR amplified products were analyzed by agarose gel electrophoresis along with undigested amplification control. Results: Methylation sensitive enzyme technique identified methylation of BRD7 promoter region seventeen out of twenty three (74%) well differentiated oral squamous cell carcinoma samples. Conclusions: The identification of BRD7 promoter hypermethylation in 74% of well differentiated oral squamous cell carcinomas indicates that the methylation dependent silencing of BRD7 gene is a frequent event in carcinogenesis. To the best of our knowledge, the present study is the first to report the occurrence of BRD7and its high prevalence in oral squamous cell carcinomas.

Identification of MC1R gene variants of Hanwoo and Holstein meat using PCR-RFLP (PCR-RFLP를 이용한 한우와 젖소고기의 MC1R 유전자변이 검출)

  • Koh Ba-Ra-Da;Kim Yong-Hwan;Park Seong-Do;Na Ho-Myung;Kim Jeong-Nam;Sung Chang-Min;Lee Sam-Soo
    • Korean Journal of Veterinary Service
    • /
    • v.28 no.3
    • /
    • pp.259-265
    • /
    • 2005
  • The melanocortin 1 receptor (MC1R) encoded by the coat color extension gene (E) plays a key role in the signaling pathway of melanin synthesis. The primers for the amplification of bovine MC1R gene were designed based on a bovine MC1R gene sequence (GenBank accession no. Y19103). A size of 483bp (482bp for Hanwoo) was amplified by PCR, digested with Hpa II restriction enzyme and electrophoresed in $1.5\%$ agarose gel. When the amplified DNA product (483 bp) was digested with Hpa II restriction enzyme, Hanwoo meat showed a single band of 482bp, whereas two fragments of 325bp and 158bp were detected in Holstein, Angus and meat of Hanwoo / Holstein cross cow having back coat color phenotype, respectively. The results of this experiment Indicate that new designed primers of bovine MCIR gene may be useful for identification of Hanwoo meat from Holstein, Black Angus and Hanwoo / Holstein cross cow meat.

Characterization of Protocatechuate 4,5-Dioxygenase Induced from p-Hydroxybenzoate -Cultured Pseudomonas sp. K82

  • Yun, Sung-Ho;Yun, Chi-Young;Kim, Seung-Il
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.152-155
    • /
    • 2004
  • Pseudomonas sp. K82 has been reported to be an aniline-assimilating soil bacterium. However, this strain can use not only aniline as a sole carbon and energy source, but can also utilize benzoate, p-hydroxybenzoate, and aniline analogues. The strain accomplishes this metabolic diversity by using dif-ferent aerobic pathways. Pseudomonas sp. K82, when cultured in p-hydroxybenzoate, showed extradiol cleavage activity of protocatechuate. In accordance with those findings, our study attempted the puri-fication of protocatechuate 4,5-dioxygenase (PCD 4,5). However the purified PCD 4,5 was found to be very unstable during purification. After Q-sepharose chromatography was performed, the crude enzyme activity was augmented by a factor of approximately 4.7. From the Q-sepharose fraction which exhibited PCD 4,5 activity, two subunits of PCD4,5 (${\alpha}$ subunit and ${\beta}$ subunit) were identified using the N-terminal amino acid sequences of 15 amino acid residues. These subunits were found to have more than 90% sequence homology with PmdA and PmdB of Comamonas testosteroni. The molecular weight of the native enzyme was estimated to be approximately 54 kDa, suggesting that PCD4,5 exists as a het-erodimer (${\alpha}$$_1$${\beta}$$_1$). PCD 4,5 exhibits stringent substrate specificity for protocatechuate and its optimal activity occurs at pH 9 and 15 $^{\circ}C$. PCR amplification of these two subunits of PCD4,5 revealed that the ${\alpha}$ subunit and ${\beta}$ subunit occurred in tandem. Our results suggest that Pseudomonas sp. K82 induced PCD 4,5 for the purpose of p-hydroxybenzoate degradation.