• Title/Summary/Keyword: Enzyme purification and characterization

Search Result 514, Processing Time 0.03 seconds

Purification and Characterization of Cholesterol Oxidase from Bacillus sphaericus (Bacillus sphaericus로부터 Cholesterol Oxidase의 정제 및 특성)

  • 서형주;김태웅;손흥수
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.5
    • /
    • pp.446-452
    • /
    • 1993
  • The cholesterol oxidase produced from Bacillus sphaericus was purified and characterized. Through a series of purification procedures including DEAE-Toyoperal 650C, Sephadex G-200 and DEAE-Sephadex A-50 column chromatography, the purified enzyme was shown to have a specific activity of 0.179 units/mg protein having 31.8 fold purification and final yield of 12%. The molecular weight of the enzyme was estimated to be 47kDa and 47.tkDa by Sephadex G-200 chromatography and SDS-PAGE. The optimum temperature and pH for the enzyme were 30C and 6.0, respectively. The activity of the purified cholesterol oxidase was inhibited by Fe2+ and Hg+.

  • PDF

Purification and Characterization of Invertase from Korean Ginseng Panax ginseng (고려인삼(Panax ginseng) Invertase의 정제와 그 특성)

  • 김용환;김병묵
    • Journal of Ginseng Research
    • /
    • v.14 no.1
    • /
    • pp.14-20
    • /
    • 1990
  • In An invertase (EC 3.2.1.26) was extracted from Korean giseng (Panax ginseng C.A. Meyer) with distilled tvater The ginseng invertase was purified about 62.6 folds purified by procedures including ammonium sulfate fractionation , DEAE-cellulofine chromatography and gelfiltrations through Sephadex G-75 and the recovery of enzyme activity was 11.1%. The homogeneity of the purified enzyme was probed by polyacrylamide gel disc electrophoresis. The purifled enzyme was divided into two different subunits by treating with a mixture of SDS and 2-mercautoethanol, and the molecular weight of the large subunit was estimatedtobe 116,000 and that of the small one to be 14,000. The optimal VH and temperature of the enzyme were pH 6 and 45$^{\circ}C$, respectively. The enzyme hydrolyzed specifically the hydrolyzation of the -fructofuranosides such as sucrose, raffinose and inulin. The Km values of the enzyme for sucrose and raffinose were determined to be 0.85 and 0.6 mM, respectively.

  • PDF

Purification and Characterization of Intracellular Cellulase from Aspergillus oryzae ITCC-4857.01

  • Begum, Ferdousi;Absar, Nurul
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • Purification and characterization of intracellular cellulase produced by A. oryzae ITCC-4857.01 are reported. The enzyme was purified by ion-exchange chromatography using DEAE-cellulose followed by Gel filtration. The purification achieved was 41 fold from the crude extract with yield of 27%. The purified enzyme showed single band on poly acrylamide gel. The molecular weight as determined by SDS-PAGE and gel filtration was 38 KDa and 38.6 KDa respectively and contained only one subunit. The enzyme is glycoprotien as nature and contained 0.67% neutral sugar. The apparent Km value of the enzyme against cellulose was 0.83%. The enzyme showed the highest relative ativities on CMC followed by avicel, salicin and filter paper. The optimum pH of activity was 5.5 and very slight activity was observed at or above pH 7.5 as well as bellow pH 3.5. The optimum tempreture of the activity was $45^{\circ}C$ and the highest activity was exhibited in 35 to $45^{\circ}C$. The enzyme lost their activities almost completely (95${\sim}$100%) at $80^{\circ}C$ or above and as well as bellow $25^{\circ}C$.

Purification and characterization of a thermostable glutamate dehydrogenase from a thermophilic bacterium isolated from a sterilization drying oven

  • Amenabar, Maximiliano J.;Blamey, Jenny M.
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • Glutamate dehydrogenase from axenic bacterial cultures of a new microorganism, called GWE1, isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular-exclusion liquid chromatography. The apparent molecular mass of the native enzyme was 250.5 kDa and was shown to be an hexamer with similar subunits of molecular mass 40.5 kDa. For glutamate oxidation, the enzyme showed an optimal pH and temperature of 8.0 and $70^{\circ}C$, respectively. In contrast to other glutamate dehydrogenases isolated from bacteria, the enzyme isolated in this study can use both $NAD^+$ and $NADP^+$ as electron acceptors, displaying more affinity for $NADP^+$ than for $NAD^+$. No activity was detected with NADH or NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionally thermostable, maintaining more than 70% of activity after incubating at $100^{\circ}C$ for more than five hours suggesting being one of the most thermoestable enzymes reported in the family of dehydrogenases.

Purification and Characterization of Extracellular $\beta$-Xylosidase from Fungi (곰팡이가 생산하는 세포외 $\beta$-Xylosidase의 정제 및 특성)

  • 고명선;이상준;이종근
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.627-635
    • /
    • 1994
  • The $\beta$-xylosidase from Penicillium sp. FX-102 was purified by 40~80% ammonium sulfate saturation, CM-Cellulose column chromatography, Sephadex G-200 gel filtration, and isoelec- tric focusing. The optimum pH and temperature for the activity of the $\beta$-xylosidase was pH 4.5 and 50$\circ$C, respectively. The enzyme was stable at the pH range of 4.5~5.5, and at 55$\circ$C for 10 min. The molecular weight of the enzyme was estimated to be about 300,000 daltons by Sephadex G-200 gel filtration and 310,000 daltons of monomer by SDS polyacrylamide gel electrophoresis. Isoelectric point of the enzyme was determined to be pH 4.4. The enzyme activity was strongly inhibited by Hg$^{2+}$, Ag$^{2+}$, n-bromosuccinimide and p-chloromercuribenzoate. Xylobiose (10 mM) was completely decomposed to xylose after 8 hrs enzyme reaction with 2 units of the $\beta$-xylosidase.

  • PDF

Purification and Characterization of Inulin Fructotransferase (Depolymerizing) from Arthrobacter sp. A-6

  • PARK, JEONG-BOK;YONG-JIN CHOI
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.402-406
    • /
    • 1996
  • Inulin fructotransferase (depolymerizing) (EC 2.4.1.93) was purified 34-fold from the culture broth of Arthrobacter sp. A-6 by using a combination of ammonium sulfate fractionation, DEAE-Sepharose CL-6B chromatography and Sephacryl S-200 gel filtration. The purified enzyme converts inulin into di-D-fructofuranose dianhydride III(DFA III) and small quantities of fructo-oligosaccharides. The temperature and pH optima of the enzyme were $70^{\circ}C$ and 6.0, respectively. Molecular weight of the enzyme was determined to be 49 kDa by 12$%$ SDS-polyacrylamide gel electrophoresis, and 145 kDa by Sephacryl S-200gel filtration. This indicates that the functional inulin fructotransferase of Arthrobacter sp. A-6 has a homomeric trimer structure. The enzyme had an isoelectric point of pH 4.6. The N-terminal amino acid sequence of the purified enzyme subunit was Ala-Asp-Asn-Pro-Asp-Gly(\ulcorner)-Ser-Asn-Met(or Glu)-Tyr-Asp-Val.

  • PDF

Purification and Characterization of Manganese-Dependent Alkaline Serine Protease from Bacillus pumilus TMS55

  • Ibrahim, Kalibulla Syed;Muniyandi, Jeyaraj;Pandian, Shunmugiah Karutha
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2011
  • The purification and characterization of a $Mn^{2+}$-dependent alkaline serine protease produced by Bacillus pumilus TMS55 were investigated. The enzyme was purified in three steps: concentrating the crude enzyme using ammonium sulfate precipitation, followed by gel filtration and cation-exchange chromatography. The purified protease had a molecular mass of approximately 35 kDa, was highly active over a broad pH range of 7.0 to 12.0, and remained stable over a pH range of 7.5 to 11.5. The optimum temperature for the enzyme activity was found to be $60^{\circ}C$. PMSF and AEBSF (1 mM) significantly inhibited the protease activity, indicating that the protease is a serine protease. $Mn^{2+}$ ions enhanced the activity and stability of the enzyme. In addition, the purified protease remained stable with oxidants ($H_2O_2$, 2%) and organic solvents (25%), such as benzene, hexane, and toluene. Therefore, these characteristics of the protease and its dehairing ability indicate its potential for a wide range of commercial applications.

Purification and Characterization of the Recombinant Arabidopsis thaliana Acetolactate Synthase

  • 조규봉;홍성택;최명운;장수익;최정도;고은희
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.648-653
    • /
    • 1997
  • Acetolactate synthase was purified from Escherichia coli MF2000/pTATX containing Arabidopsis thaliana acetolactate synthase gene. Purification steps included DEAE cellulose ion exchange column chromatography, phenyl sepharose hydrophobic column chromatography, hydroxylapatite affinity column chromatography, and Mono-Q HPLC. Molecular weight was estimated to be ∼65 KDa and purification fold was 109 times. The enzyme showed a pH optimum of 7 and the $K_M$ value was 5.9 mM. The purified enzyme was not inhibited by any of the end products, valine, leucine, and isoleucine.

Purification and Characterization of an Alkali-Thermostable Lipase from Thermophilic Anoxybacillus flavithermus HBB 134

  • Bakir, Zehra Burcu;Metin, Kubilay
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1087-1097
    • /
    • 2016
  • An intracellular lipase from Anoxybacillus flavithermus HBB 134 was purified to 7.4-fold. The molecular mass of the enzyme was found to be about 64 kDa. The maximum activity of the enzyme was at pH 9.0 and 50℃. The enzyme was stable between pH 6.0 and 11.0 at 25℃, 40℃, and 50℃ for 24 h. The Km and Vmax of the enzyme for pNPL substrate were determined as 0.084 mM and 500 U/mg, respectively. Glycerol, sorbitol, and mannitol enhanced the enzyme thermostability. The enzyme was found to be highly stable against acetone, ethyl acetate, and diethyl ether. The presence of PMSF, NBS, DTT and β-mercaptoethanol inhibited the enzyme activity. Hg2+, Fe3+, Pb2+, Al3+, and Zn2+ strongly inhibited the enzyme whereas Li+, Na+, K+, and NH4+ slightly activated it. At least 60% of the enzyme activity and stability were retained against sodium deoxycholate, sodium taurocholate, n-octyl-β-D-glucopyranoside, and CHAPS. The presence of 1% Triton X-100 caused about 34% increase in the enzyme activity. The enzyme is thought to be a true lipase since it has preferred the long-chain triacylglycerols. The lipase of HBB 134 cleaved triolein at the 1- or 3-position.

Overexpression, Purification, and Biochemical Characterization of the Thermostable NAD-dependent Alcohol Dehydrogenase from Bacillus stearothermophilus

  • Shim, Eun-Jung;Jeon, Sang-Hoon;Kong, Kwang-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.738-744
    • /
    • 2003
  • The gene ADH encoding NAD-dependent alcohol dehydrogenase from Bacillus stearothennophilus was cloned and overexpressed as a GST fusion protein at a high level in Escherichia coli. The expressed fusion protein was purified simply by glutathione affinity chromatography. GST fusion protein was then cleaved by thrombin, while soluble enzyme was further purified by glutathione affinity chromatography. The recombinant enzyme had the same elctrophoretic mobility as the native enzyme from Bacillus stearothennophilus. The recombinant enzyme catalyzed the oxidation of a number of alcohols and exhibited high activities towards secondary alcohols. The $K_m\;and\;V_{max}$ values of the recombinant enzyme for ethanol were 5.11 mM and 61.35 U/mg, respectively. Pyridine and imidazole notably inhibited the enzymatic activity. The activity of the recombinant enzyme optimally proceeded at pH 9.0 and $70^{\circ}C$. The midpoint of the temperature-stability curve for the recombinant enzyme was approximately $68^{\circ}C$, and the enzyme was not completely inactivated even at $85^{\circ}C$. The recombinant enzyme showed a high resistance towards denaturing agents (0.05% SDS, 0.1 M urea). Therefore, due to its stability and relatively broad substrate specificity, the recombinant enzyme could be utilized in bio-industrial processes and biosensors.