• Title/Summary/Keyword: Enzyme model

Search Result 616, Processing Time 0.027 seconds

Immobilization of Keratinolytic Metalloprotease from Chryseobacterium sp. Strain kr6 on Glutaraldehyde-Activated Chitosan

  • Silveira, Silvana T.;Gemelli, Sabrine;Segalin, Jeferson;Brandelli, Adriano
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.818-825
    • /
    • 2012
  • Keratinases are exciting keratin-degrading enzymes; however, there have been relatively few studies on their immobilization. A keratinolytic protease from Chryseobacterium sp. kr6 was purified and its partial sequence determined using mass spectrometry. No significant homology to other microbial peptides in the NCBI database was observed. Certain parameters for immobilization of the purified keratinase on chitosan beads were investigated. The production of the chitosan beads was optimized using factorial design and surface response techniques. The optimum chitosan bead production for protease immobilization was a 20 g/l chitosan solution in acetic acid [1.5% (v/v)], glutaraldehyde ranging from 34 g to 56 g/l, and an activation time between 6 and 10 h. Under these conditions, above 80% of the enzyme was immobilized on the support. The behavior of the keratinase loading on the chitosan beads surface was well described using the Langmuir model. The maximum capacity of the support ($q_m$) and dissociation constant ($K_d$) were estimated as 58.8 U/g and 0.245 U/ml, respectively. The thermal stability of the immobilized enzyme was also improved around 2-fold, when compared with that of the free enzyme, after 30 min at $65^{\circ}C$. In addition, the activity of the immobilized enzyme remained at 63.4% after it was reused five times. Thus, the immobilized enzyme exhibited an improved thermal stability and remained active after several uses.

Effects of Exogenous Enzymes on Ruminal Fermentation and Degradability of Alfalfa Hay and Rice Straw

  • Yang, H.E.;Son, Y.S.;Beauchemin, K.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.56-64
    • /
    • 2011
  • This study was conducted to evaluate the use of exogenous enzymes as a potential means of improving the ruminal digestion (i.e., degradability) of alfalfa hay and rice straw. Twenty six enzyme-additives were examined in terms of protein concentration and enzymic activities on model substrates. The exogenous enzymes contained ranges of endoglucanase, xylanase, ${\beta}$-glucanase, ${\alpha}$-amylase, and protease activities. Six of the enzyme additives were chosen for further investigation. The enzyme additives and a control without enzyme were applied to mature quality alfalfa hay substrate and subsequently incubated in rumen batch cultures. Five of the enzyme additives (CE2, CE13, CE14, CE19, and CE24) increased total gas production (GP) at 48 h of incubation compared to the control (p<0.05). The two additives (CE14 and CE24) having the greatest positive effects on alfalfa hay dry matter, neutral detergent fibre (NDF) and acid detergent fibre (ADF) degradability were further characterized for their ability to enhance degradation of low quality forages. The treatments CE14, CE24, a 50:50 combination of CE14 and CE24 (CE14+24), and control (no enzyme) were applied to mature alfalfa hay and rice straw. For alfalfa hay, application of the two enzyme additives, alone and in combination, increased GP compared to the control at 48 h fermentation (p<0.05), whereas only CE14 and CE14+24 treatments improved GP from rice straw (p<0.05). Rumen fluid volatile fatty acid concentrations throughout the incubation of rice straw were analyzed. Acetate concentration was slightly lower (p<0.05) for CE14${\times}$CE24 compared to the control, although individually, CE14 and CE24 acetate concentrations were not different from the control. Increases (p<0.05) in alfalfa hay NDF degradability measured at 12 and 48 h of incubation occurred only for CE14 (at 12 h) and for CE14+24 (at 12 and 48 h). Similarly, ADF degradability increased (p<0.05) with CE14 and CE14+24. As for rice straw, increased DM degradability was observed at 12 and 48 h of incubation for all enzyme treatments with an exception for CE14 at 12 h. The degradability of NDF was improved by all the enzyme treatments at either incubation time, while ADF degradability was only enhanced at 48 h. Overall, the enzymes led to enhanced digestion of mature alfalfa and there was evidence of improved digestibility of rice straw, an even lower quality forage.

Kinetic Behavior of Immobilized Tyrosinase on Carbon in a Simulated Packed-Bed Reactor (충전층에서 탄소에 고정시킨 Tyrosinase의 반응속도에 관한 연구)

  • Shin, Sun Kyoung;Kim, Kyeo-Keun
    • Analytical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.66-74
    • /
    • 1997
  • Influence of the axial dispersion on immobilized enzyme catalytic bed was investigated in order to examine the kinetic behavior of the biocatalysis. The enzyme employed in this study was the tyrosinase(EC 1.14.18.1) immobilized on carbon support : this system requires two substrates of phenol and oxygen. This enzyme has potential application for phenol degradation in waste water. A simulated reactor was a packed-bed reactor of 2.54cm in diameter and 10cm long, loaded with the immobilized carbon particle with an average diameter of $550{\mu}m$. A phenol feed in the strength of 55.5mM(5220ppm) was used to observe the behavior of the immobilized enzyme column at three different dissolved oxygen levels of 0.08445mM(2.7ppm), 0.1689mM(5.4ppm) and 0.3378mM(9.5ppm) with the flow rates in the range of 60(1mL/s) to 180mL/min(3mL/s). Examination of the Biot number and Damkolher numbers of the immobilized system enables us to eliminate the contribution of external mass transfer to set of differential equations derived from the dispersion model. Solution of the equation was finally obtained numerically with the application of the Danckwert boundary conditions and the assumed zero-and first order rates on the non-linear two substrate enzyme kinetics. Higher conversion of phenol was observed at the low flow rates and at the higher oxygen concentration. Comparison of axial dispersion and plug flow model showed that no detectable difference was observed in the column outlet conversion between the axial and the plug flow models which was in complete agreement with the previous studies.

  • PDF

Gene silencing assessment for genes from recalcitrant or poorly studied plant species

  • Kamoi, Takahiro;Eady, Colin Charles;Imai, Shinsuke
    • Plant Biotechnology Reports
    • /
    • v.2 no.3
    • /
    • pp.199-206
    • /
    • 2008
  • We have developed an efficient system of assessing the ability of a gene silencing cassette to silence transcripts from recalcitrant or poorly studied plant species by using a model plant as a host for the gene of interest. Tobacco plants transgenic for Lachrymatory Factor Synthase (LFS) enzyme activity from onion were first produced by introducing a CaMV 35S-onion-lfs gene construct. These plants were then subjected to a second transformation with an RNAi construct directed against the lfs gene sequence. LFS enzyme activity assay showed that the transgenic plants, containing both the lfs gene and the RNAi construct, had significantly reduced LFS activity. This observation was supported by Western analysis for the LFS protein and further validated by quantitative RT-PCR analysis that demonstrated a significant reduction in the lfs transcript level in the dual transformants. In this work, we have demonstrated that the RNAi construct is a suitable candidate for the development of a non-lachrymatory onion. Our model plant RNAi system has wide-reaching applications for assessment and targeting of plant secondary pathway genes, from poorly studied or recalcitrant plant species, that are important in the pharmacological, food and process industries.

Effect of Dietary Soybean Protein on Cerebral Infarction Size and Antioxidant Enzyme Activities in Rat Focal Brain Ischemia Model (쥐의 대두 단백질 섭취가 국소 뇌허혈/재관류 후 뇌경색 크기와 항산화효소 활성도에 미치는 영향)

  • Lee, Hee-Joo
    • Journal of Korean Biological Nursing Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the cerebral infarction size, antioxidant enzyme activities and lipid peroxidation changes after 6 weeks of dietary soybean protein intake in a rat focal brain ischemia model. Method: Weaning Sprague-Dawley rats were fed with either modified AIN-93G diet containing casein 20% (control), 20% soybean protein isolate-based diet (S20), or 40% of soybean protein isolate-based diet (S40) for 6 weeks. The animals were subject to right middle cerebral artery occlusion for 2 hr. After 24 hr of recirculation, the rats were sacrificed. Antioxidant enzymes activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and thiobarbituric acid reactive substance (TBARS) level in the right brain were also measured. Result: There were no significant differences in the right cortical infarction volume, TBARS level, SOD and CAT activities among the three groups whereas the GPx activities of the S20 group were significantly higher than those of the control group (p=.02). Conclusion: Our results suggest that 20% of soybean protein may have a modulating effect on GPx and possibly have some protective effect against oxidative stress although it may enough to decrease cerebral infarction volume in rat focal brain ischemia model.

  • PDF

Antitumor Effects and Immunomodulating Activities of Phellinus linteus Extract in a CT-26 Cell-Injected Colon Cancer Mouse Model

  • Yang, Byung-Keun;Hwang, Seung-Lark;Yun, Ik-Jin;Do, Eun-Ju;Lee, Won-Ha;Jung, Young-Mi;Hong, Sung-Chang;Park, Dong-Chan
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.128-132
    • /
    • 2009
  • The antitumor effects of Phellinus linteus extract (Keumsa Linteusan) were investigated in a CT-26 cell-injected colon cancer mouse model. When administered orally (250${\sim}$1,000 mg/kg body weight), Keumsa Linteusan significantly inhibited the growth of solid colon cancer. The highest dose was highly effective, reducing tumor formation by 26% compared with the control group. The anticomplementary activity of Keumsa Linteusan increased in a dose-dependent manner. Lysosomal enzyme activity of macrophages was increased by 2-fold (100 ${\mu}$/ml) compared with the control group. Keumsa Linteusan can be regarded as a potent enhancer of the innate immune response, and can be considered as a very promising candidate for antitumor action.

Phenotypic Characterization of MPS IIIA (Sgshmps3a/ Sgshmps3a) Mouse Model

  • Park, Sung Won;Ko, Ara;Jin, Dong-kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.4 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Mucopolysaccharidosis IIIA is a heritable neurodegenerative disorder resulting from the dysfunction of the lysosomal hydrolase sulphamidase. This leads to the primary accumulation of the complex carbohydrate heparan sulphate in a wide range of tissues and CNS degeneration. Characterization of animal model is the beginning point of the therapeutic clinical trial. Mouse model has a limitation in that it is not a human and does not have all of the disease phenotypes. Therefore, delineate of the phenotypic characteristics of MPS IIIA mouse model prerequisite for the enzyme replace treatment for the diseases. We designed 6-month duration of phenotypic characterization of MPS IIIA mouse biochemically, behaviorally and histologically. We compared height and weight of MPS IIIA mouse with wild type from 4 weeks to 6 months in both male and female. At 6 months, we measured GAG storage in urine kidney, heart, liver, lung and spleen. The brain GAG storage is presented with Alcian blue staining, immunohistochemistry, and electron-microscopy. The neurologic phenotype is evaluated by brain MRI and behavioral study including open field test, fear conditioning, T-maze test and Y-maze test. Especially behavioral tests were done serially at 4month and 6month. This study will show the result of the MPS IIIA mouse model phenotypic characterization. The MPS IIIA mouse provides an excellent model for evaluating pathogenic mechanisms of disease and for testing treatment strategies, including enzyme or cell replacement and gene therapy.

Improvement of ${\beta}-glucosidase$ Activity of Olea europaea Fruit Extracts Processed by Membrane Technology

  • Mazzei, R.;Giomo, L.;Spadafora, A.;Mazzuca, S.;Drioli, E.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.58-66
    • /
    • 2006
  • The ${\beta}-glucosidase$ from olive fruit is of particular interest compared to the ones from other sources because it has shown to have high specifity to convert the oleuropein into dialdehydes, which have antibacterial activity and are of high interest for their application in the food and pharmaceutical fields. The enzyme is not yet commercially available and advanced clean and safe technologies for its purification able to maintain the functional stability are foreseen. The purification of this protein from fruit extracts has been already tempted by electrophoresis but either enzyme deactivation or high background with unclear profiles occurred. In this work, fruit extracts obtained from the ripening stage that showed the highest enzyme activity have been processed by diafiltration and ultrafiltration. Asymmetric membranes made of polyamide or polysulphone having 50 and 30 kDa molecular weight cut-off, respectively, were tested for the diafiltration process. Ultrafiltration membranes made of polyethersulfone with 4 kDa molecular weight cut-off were used to concentrate the dia-filtered permeate solutions. The efficiency of the separation processes was evaluated byenzyme activity tests using the hydrolysis of p-D-nitrophenyl-${\beta}$-D-glucopyranoside (pNPGlc) as reaction model. Qualitative and quantitative electrophoresis were applied to analyze the composition of protein solution before and after the membrane separation; in addition dot blot and western blot analyses were applied to verify the presence of ${\beta}-glucosidase$ in the processed fractions. The overall results showed that the ${\beta}-glucosidase$ functional stability was preserved during the membrane operations and the removal of 20 kDa proteins allowed to increase the specific activity of the enzyme of about 52% compared to the one present in the initial fruit extract.

Effect of Ion Pair on Thermostability of F1 Protease: Integration of Computational and Experimental Approaches

  • Rahman, Raja Noor Zaliha Raja Abd;Noor, Noor Dina Muhd;Ibrahim, Noor Azlina;Salleh, Abu Bakar;Basri, Mahiran
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.34-45
    • /
    • 2012
  • A thermophilic Bacillus stearothermophilus F1 produces an extremely thermostable serine protease. The F1 protease sequence was used to predict its three-dimensional (3D) structure to provide better insights into the relationship between the protein structure and biological function and to identify opportunities for protein engineering. The final model was evaluated to ensure its accuracy using three independent methods: Procheck, Verify3D, and Errat. The predicted 3D structure of F1 protease was compared with the crystal structure of serine proteases from mesophilic bacteria and archaea, and led to the identification of features that were related to protein stabilization. Higher thermostability correlated with an increased number of residues that were involved in ion pairs or networks of ion pairs. Therefore, the mutants W200R and D58S were designed using site-directed mutagenesis to investigate F1 protease stability. The effects of addition and disruption of ion pair networks on the activity and various stabilities of mutant F1 proteases were compared with those of the wild-type F1 protease.

The Separation of Transglutaminase Produced from Streptomyces mobaraensis and Its Application on Model Food System (Streptomyces mobaraensis로부터 생산되는 transglutaminase 분리 및 모델식품 적용)

  • Yoo, Jae-Soo;Shin, Weon-Sun;Chun, Gie-Tack;Kim, Young-Soo;Jeong, Yong-Seob
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.260-265
    • /
    • 2003
  • Transglutaminase (TG) was prepared from Streptomyces mobaraensis to improve texture and self-life of food. In preliminary experiments, texture of the dough was not improved due to the interference in microbial TG reaction by proteases present in the crude enzyme. Among the cation exchange resins tested for the removal of proteases, MonoPlus S 100 was the most efficient. Further purification steps with a quaternary ammonia salt resin and gel permeation chromatography effectively removed proteases from crude enzyme. Molecular weight of purified enzyme was about 38,000 on SDS-polyacrylamide gel electrophoresis. Farinograph data showed the addition of purified enzyme to wheat flour gave higher stability and lower weakness values those that of crude enzyme.