• 제목/요약/키워드: Enzyme induction

검색결과 495건 처리시간 0.024초

Antistress effect of red ginseng in brain cells is mediated by TACE repression via PADI4

  • Kim, Eun-Hye;Kim, In-Hye;Ha, Jung-Ah;Choi, Kwang-Tae;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • 제37권3호
    • /
    • pp.315-323
    • /
    • 2013
  • Ginseng is known to have antistress effects. Previously, red ginseng (RG) was shown to repress stress-induced peptidyl arginine deiminase type IV (PADI4) via estrogen receptor ${\beta}$ ($ER{\beta}$) in the brain, thus inhibiting brain cell apoptosis. Moreover, tumor necrosis factor (TNF)-${\alpha}$ plays a critical role in immobilization (IMO) stress. However, the signaling pathway of RG-mediated repressesion of inflammation is not completely understood. In this study, we determined how RG modulated gene expression in stressed brain cells. Since secretion of TNF-${\alpha}$ is modulated via TNF-${\alpha}$ converting enzyme (TACE) and nuclear factor (NF)-${\kappa}B$, we examined the inflammatory pathway in stressed brain cells. Immunohistochemistry revealed that TACE was induced by IMO stress, but RG repressed TACE induction. Moreover, PADI4 siRNA repressed TACE expression compared to the mock transfected control suggesting that PADI4 was required for TACE expression. A reporter assay also revealed that $H_2O_2$ oxidative stress induced NF-${\kappa}B$ in neuroblastoma SK-N-SH cells, however, RG pretreatment repressed NF-${\kappa}B$ induction. These findings were supported by significant induction of nitric oxide and reactive oxygen species (ROS) by oxidative stress, which could be repressed by RG administration. Taken together, RG appeared to repress stress-induced PADI4 via TACE and NF-${\kappa}B$ in brain cells thus preventing production of ROS and subsequently protecting brain cells from apoptosis.

Glucose-diethyldithiocarbamate가 흰쥐의 약물 대사 효소에 미치는 영향 연구 (Effect of Glucose-diethyldithiocarbamate on Drug Metabolizing Enzymes in Rats)

  • 최병기;신혜주
    • Biomolecules & Therapeutics
    • /
    • 제8권4호
    • /
    • pp.299-304
    • /
    • 2000
  • The modulation of cytochrome P450(P450) activities and glutathione S-transferase (GST) was investigated after i.p. administration of glucose-diethyldithiocarbamate (Glu-DDTC) to rats. P450 1 A2 and 2El activities were inhibited by 60% 4 hr after the administration of 200 mg Glu-DDTC/kg and those activities were recovered to original levels 24 hr after dosing. In contrast, GST activities were enhanced up to 24 hr after dosing. These results seem to be due to the bifunctional activity of Glu-DDTC. Glu-DDTC acts as an inhibitor of P450 enzymes as well as inducer of GST enzyme. Glu-DDTC inhibited PNP hydroxylation (P450 2El) and ethoxycoumarin O-deethylation (P450 1A2) in a dose-dependent manner up to 200 mg/kg wherease it did not affect testosterone 6$\beta$-hydroxylation (P450 3A) and pentoxyresorufin O-dealkylation (P450 2B) activities. Induction of GST activity toward 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzenen (DCNB) was dependent on the dose of Glu-DDTC and no species difference in the GST induction was seen between rat and mouse. Amoung GST subunits, Ya, Yb1 and partially Yb2 were induced by Glu-DDTC as conjugated by western blotting. The levels Yp, Yk and Yc subunits were not affected by Glu-DDTC treatment. Therefore the enhanced activity of GST toward CDNB and DCNB might be due to the induction of Ya, Ybl and partially Yb2 subunits. In conclusion, Glu-DDTC selectively inhibited P45O 1A2 and P450 2El activities whereas it enhanced Ya, Ybl subunits and partially Yb2 subunits of GST and the antimutagenic activity of this compound might be attributed from the modulation of these enzyme activities in animals.

  • PDF

\beta-Mannanase를 생산하는 Bacillus subtilis JS-1의 분리 및 효소 생산성 (Optimization of \beta-mammanase Production from Bacillus subtilis JS-1.)

  • 임지수;정진우;이종수;강대경;강하근
    • 한국미생물·생명공학회지
    • /
    • 제31권1호
    • /
    • pp.57-62
    • /
    • 2003
  • 토양으로부터 $\beta$-mannanase활성이 우수한 균주를 분리하여 형태학적, 생화학적 동정과정을 거쳐 Bacillus subtilis JS-1으로 동정하였다. 분리균이 생산하는 $\beta$-mannanase 효소의 최적활성은 55$^{\circ}C$와 pH 5.0이었다. 탄소원이 다른 배지에서 배양한 분리 균주의 상등액을 전기영동하여 효소활성을 관찰한 결과 탄소원에 상관없이 분자량 130kDa에 해당하는 단일 단백질만이 효소 활성을 나타내었다 Bacillus subtilis JS-1은 탄소원으로 lactose와 locust bean gum이 존재할 때 $\beta$-mannanase 생산성이 크게 증가하는 것으로 나타났으며, lactose와 locust bean gum이 각각 0.5 % 존재할 때 배양 상등액의 $\beta$-mannanase 활성은 30U/ml과 45U/ml로 탄소원이 없는 대조구에 비해 최대 18배 정도 생산성이 증가하였다. 배지에 locust bean gum을 첨가하였을 때 효소 생산성 뿐만 아니라 균체의 성장도 함께 증가하는 것으로 보아 분리균주는 locust bean gum을 분해하여 에너지원으로 이용하는 것으로 판단된다

Mouse hepatoma 세포를 이용한 농산부산물로부터 quinone reductase활성물질의 탐색 (Screening of Quinone Reductase Inducers from Agricultural Byproducts Using Mouse Hepatoma Cell Line)

  • 김정상;남영중;김주원
    • 한국식품과학회지
    • /
    • 제27권6호
    • /
    • pp.972-977
    • /
    • 1995
  • Quinone reductase(QR)를 포함한 2상효소계를 활성화시키는 성분들은 많은 동물실험에서 발암물질의 세포내 작용을 억제함으로서 항종양효과를 나타내는 것으로 보고되어 있다. 본 연구에서는 대표적인 농산부산물로서 미강, 밀기울, 탈지대두박, 두유박, 참깨박, 들깨박등 6종의 시료에 대한 암예방효과를 갖는 물질의 존재여부를 탐색하기 위하여, mouse hepatoma cell line(Hepalclc7 cells) 을 이용하여, quinone reductase활성유도 여부를 측정하였다. 참깨박과 들깨박의 80%메탄올 추출물은 0.5mg/ml 농도에서 강력한 QR 유도활성을 나타냈으며, 같은 농도에서 다른 시료들은 거의 QR 효소활성을 증가시키지 않았다. 한편 QR효소활성을 유도하는 성분을 찾아내기 위하여 일차적으로 TLC를 수행한 결과, 참깨박과 들깨박의 메탄올 추출물 가운데 사용한 전개용매(n-butanol : n-propanol : 2N ammonium hydroxide(10 : 60 : 30)에서 가장 빨리 이동하는 분획(Rf=0.70)이 유효성분을 함유하고 있음을 확인하였으며, 현재 활성성분의 동정이 진행중에 있다.

  • PDF

Aspergillus nidulans 의 섬유질 분해효소계 생합성에 미치는 기질의 공조효과 (Synergistic Effect of Substrates on the Biosynthesis of Cellulase and Xylanase Complexes from Aspergillus nidulans)

  • 이정애;맹진수;맹필재;이영하
    • 한국균학회지
    • /
    • 제17권2호
    • /
    • pp.57-65
    • /
    • 1989
  • Cellulose와 hemicellulose의 단일 유도기질과 그 혼합물을 이용하여 Aspergillus nidulans의 섬유질 분해효소계의 유도 특이성을 조사하였다. 섬유질 분해효소계의 생합성에 있어서 최적의 유도기질이 endoglucanase의 경우엔 carboxymethylcellulose, ${\beta}-glucosidase$는 cellobiose, 그리고 endoxylanase와 ${\beta}-xylosidase$는 xylan으로 알려져 왔으나 이들 단일기질보다 기질들의 혼합물 특히 CMC-xylan과 CMC-xylan-laminarin of cellulase와 xylanase complexes의 생합성을 증가시키는데 매우 효과적인 것으로 나타났다. 이것은 각각의 유도기질에 따른 endoglucanase와 ${\beta}-glucosidase$ 그리고 endoxylanase의 components 양상 및 비교 활성도 변화에 기인하는 것으로 polyacrylamide gel 전기영동과 활성염색의 결과에서도 나타났다. 섬유소 분해효소계 생합성을 위한 유도물질의 이와 같은 공조효과는 Aspergillus nidulans에서 Cellulose와 xylanase systems의 생합성 조절이 유도물질에 의한 효소의 유도 수준에서 상호 관련되고 있음을 시사한다.

  • PDF

살리실산이 오이 잎의 산화적 스트레스와 UV-B 내성에 미치는 영향 (Effects of Salicylic Acid on Oxidative Stress and UV-B Tolerance in Cucumber Leaves)

  • 홍정희;김태윤
    • 한국환경과학회지
    • /
    • 제16권12호
    • /
    • pp.1345-1353
    • /
    • 2007
  • The effect of salicylic acid(SA) on antioxidant system and protective mechanisms against UV-B induced oxidative stress was investigated in cucumber(Cucumis sativus L.) leaves. UV-B radiation and SA were applied separately or in combination to first leaves of cucumber seedlings, and dry matter accumulation, lipid peroxidation and activities of antioxidant enzymes were measured in both dose and time-dependant manner. UV-B exposure showed reduced levels of fresh weight and dry matter production, whereas SA treatment significantly increased them. SA noticeably recovered the UV-B induced inhibition of biomass production. UV-B stress also affected lipid peroxidation and antioxidant enzyme defense system. Malondialdehyde(MDA), a product of lipid peroxidation, was greatly increased under UV-B stress, showing a significant enhancement of a secondary metabolites, which may have antioxidative properties in cucumber leaves exposed to UV-B radiation. Combined application of UV-B and SA caused a moderate increase in lipid peroxidation. These results suggest that SA may mediate protection against oxidative stress. UV-B exposure significantly increased SOD, APX, and GR activity compared with untreated control plants. Those plants treated with 1.0 mM SA showed a similar pattern of changes in activities of antioxidant enzymes. SA-mediated induction of antioxidant enzyme activity may involve a protective accumulation of $H_2O_2$ against UV-B stress. Moreover, their activities were stimulated with a greater increase by UV-B+SA treatment. The UV-B+SA plants always presented higher values than UV-B and SA plants, considering the adverse effects of UV-B on the antioxidant cell system. ABA and JA, second messengers in signaling in response to stresses, showed similar mode of action in UV-B stress, supporting that they may be important in acquired stress tolerance. Based on these results, it can be suggested that SA may participates in the induction of protective mechanisms involved in tolerance to UV-B induced oxidative stress.

Effect of Environmental Factors on In Vivo Folding of Bacillus macerans Cyclodextrin Glycosyltransferase in Recombinant Escherichia coli

  • Jin, Hee-Hyun;Han, Nam-Soo;Kweon, Dae-Hyuk;Park, Yong-Cheol;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.92-96
    • /
    • 2001
  • Effect of environmental factors on the expression of soluble forms of Bacillus macerans cyclodextrin glycosyltransferase in recombinant Escherichia coli BL21(DE3)pLysE:pTCGT1 were investigated. The amount of soluble CGTase produced in the cell was measured by determining its enzymatic activity. The soluble fractionof the enzyme was increased by lowering the culture temperature to $30{\circ}C$ and medium pH to 5.8 compared to the enzyme production in LB medium at $37^{\circ}C$ and pH7.0. Addition of 0.2 M NaCl enhanced enzyme expression levels at the expense of cell growth. Glycine betaine that was added after 3 h of induction protected not only the cell growth from hig osmotic pressue but also hepld in vivo folding of CGTase in recombinant E. coli. Addition of 1 mM $CaCl_2$ was also effective in the expression of soluble CGTase, resulting in 15 U/ml of the enzyme activity.

  • PDF

실험동물에서 apoptosis의 모델개발과 생체면역반응 및 형태학적 특징 II. Apoptosis 및 hepatic tumorigenesis 과정에서의 혈청 간 효소활성치 및 조직소견 (Development of Apoptosis Model and Bioimmune Responses and Morphological Characterization in Experimental Animal II. Activities of Serum Hepatic Enzyme and Histological Findings between Apoptosis and Hepatic Tumorigenesis)

  • 강정부;하우송;곽수동;김지경
    • 한국임상수의학회지
    • /
    • 제16권1호
    • /
    • pp.108-117
    • /
    • 1999
  • Hepatic tumorigenesis was induced by ad libitum feeding of diethylnitrosamine (DEN) only. We could also observe hepatic tumor induction in 100% of DEN treated rats without any other cocarcinogen. The liver specific enzyme activities (AST, ALT, ALP, ${\gamma}$-GTP) were significantly increased (P<0.05) in all treated groups compared to control and induced apoptosis groups. In histopathological analysis, the altered foci, hyperplastic nodules, neoplastic nodules, adenomas and carcinomas were observed in liver tumors induced by administration of DEN in rats. Lipopolysaccharide-induced apoptosis in D-galactosamine sensitized mice was investigated in hepatocytes in vivo. Typical morphological changes of apoptosis were detectable in liver 12 hr and 24 hr after the injection of Lipopolysaccharide (5 $\mu\textrm{g}$) and D-galactosamine (20 mg) to mice. It was suggested that organ specific enzyme activities and morphological findings might be very useful for understanding the role of hepatic tumorigenesis including the apoptotic cell death.

  • PDF

옥수수 生 전분 당화 효소 高 생산성 변이주 개발 (Improvement of Aspergillus niger 55, a Raw Corn Meal Saccharifying Enzyme Hyperproducer, through Mutation and Selective Screening Techniques)

  • 오성훈;오평수
    • 한국미생물·생명공학회지
    • /
    • 제19권2호
    • /
    • pp.140-146
    • /
    • 1991
  • Mutation experiments were performed to select the mutant of Aspergillus niger 55, which had lost almost all the ability to produce transglucosidases but retained that of high productivity of raw meal saccharifying enzyme, by means of successive induction with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG), ultraviolet(UV) light, and ${\gamma}$-rays. Also, we used the mutant enrichment techniques, such as liquid culture-filtration procedure and differential heat sensitivity of conidia, in order to increase the possibility of obtaining a mutant. The glucoamylase productivity of mutant PFST-38 was 11 times higher than that of the parent strain. The mutant PFST-38 was morphologically identical to the parent strain, except for the size of conidia, the tendency to form conidia and the lenght of conidiophore. Asp. niger mutant PFST-38 apeared to be useful for the submerged production of the raw corn meal saccharifying enzyme.

  • PDF

Sulforaphane is Superior to Glucoraphanin in Modulating Carcinogen-Metabolising Enzymes in Hep G2 Cells

  • Abdull Razis, Ahmad Faizal;Noor, Noramaliza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4235-4238
    • /
    • 2013
  • Glucoraphanin is the main glucosinolate found in broccoli and other cruciferous vegetables (Brassicaceae). The objective of the study was to evaluate whether glucoraphanin and its breakdown product sulforaphane, are potent modulators of various phase I and phase II enzymes involved in carcinogen-metabolising enzyme systems in vitro. The glucosinolate glucoraphanin was isolated from cruciferous vegetables and exposed to human hepatoma cell line HepG2 at various concentrations (0-25 ${\mu}M$) for 24 hours. Glucoraphanin at higher concentration (25 ${\mu}M$) decreased dealkylation of methoxyresorufin, a marker for cytochrome P4501 activity; supplementation of the incubation medium with myrosinase (0.018 U), the enzyme that converts glucosinolate to its corresponding isothiocyanate, showed minimal induction in this enzyme activity at concentration 10 ${\mu}M$. Quinone reductase and glutathione S-transferase activities were unaffected by this glucosinolate; however, supplementation of the incubation medium with myrosinase elevated quinone reductase activity. It may be inferred that the breakdown product of glucoraphanin, in this case sulforaphane, is superior than its precursor in modulating carcinogen-metabolising enzyme systems in vitro and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.