• Title/Summary/Keyword: Enzyme complex

Search Result 444, Processing Time 0.029 seconds

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Effects of complex extracts having Drynariae Rhizoma on suppression of collagenolysis and bone resorption in mouse calvarial osteoblasts (골쇄보(骨碎補) 복합제제가 생쥐의 calvarial osteoblast에서 collagen 용해와 골재흡수에 미치는 영향)

  • Hong, Shi-Nae;Jeong, Ji-Cheon
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.9
    • /
    • pp.179-191
    • /
    • 2000
  • Anti-bone resorption properties of the Korean herbal medicine, CEDR, which is comprised 5 herbs of [Drynariae Rhizoma, Loranthi Ramus, Cibotii Rhizoma, Amydae carapax, Psoraleae semen], were investigated. Mouse calvarial osteoblast cells were isolated and cultured. Mouse osteoblasts, which were stimulated by PTH, $1,25(OH)_2D_3$, $TNF-\alpha$ and IL-1 as bone resorption agents, showed increased collagenolysis by producing the active gelatinase. IL-1 in stimulating bone resorption was examined using fetal mouse long bone organ culture. IL-1 stimulated bone resorption and produced marked resorption when present simultaneously. The results of in vitro cytotoxicities showed that CEDR extracts have no any cytotoxicities in concentrations of $1-60{\mu}g/ml$ and furthermore there is no any cytotoxicity even in concentration of $120{\mu}g/ml$ on mouse calvarial bone cells. CEDR extracts had protective activity against PTH (5 units/ml, or $IL-1{\alpha}$ (1 ng/ml) or $TNF-\alpha$ or $1,25(OH)_2D_3$ (20 ng/ml), $IL-1{\alpha}$ and $IL-1{\beta}-induced$ collagenolysis in the mouse calvarial cells. Pretreatment of the CEDR extracts for 1 h, which by itself had little effect on cell survival, did not enhance the collagenolysis, nor significantly reduced the collagenolysis by pretreatment. Furthermore, the medicinal extracts were shown to have the protective effects against collagenolysis induced by $IL-1{\alpha}$ and $IL-1{\beta}$. Pretreatment of the extracts for 1 h significantly reduced the collagenolysis. Interestingly, the CEDR extracts were shown to have the inhibiting effects against gelatinase enzyme and processing activity induced by the bone resorption agents of PTH, $1,25(OH)_2D_3$, $TNF-\alpha$, $IL-1{\beta}$ and $IL-1{\alpha}$ with strong protective effect in pretreatment with the extracts. CEDR extracts were shown to have the inhibiting effects against $IL-1{\alpha}-$ and $IL-1{\beta}-stimulated$ bone resorption and the effect of the pretreatment with a various concentrations of the medicinal extracts were significant. These results indicated that the CEDR extracts are highly stable and applicable to clinical uses in osteoporosis.

  • PDF

Expression Analysis of Glutathione Peroxidase Genes in the Stage-Specific Seminiferous Tubules of Mice Excised by a Laser Capture Microdissection (Laser Capture Microdissection으로 절제된 마우스의 특정 단계별 정세관에서 Glutathione Peroxidase 유전자의 발현 분석)

  • Yon, Jung-Min;Lin, Chun-Mei;Park, Jung-Hoon;Hong, Min-Ki;Jung, A-Young;Kim, Mi-Ra;Baek, In-Jeoung;Lee, Beom-Jun;Nam, Sang-Yoon;Yun, Young-Won
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • The seminiferous epithelium, with its division into 12 spermatogenic stages in the mouse, is a very complex tissue. Glutathione peroxidase (GPx) is a representative antioxidant enzyme that is capable of reducing organic hydroperoxides to their corresponding hydroxyl compounds utilizing glutathione and is related to the mammalian spermatogenesis. In this study, a real-time PCR was performed in the stage-specific seminiferous tubules of mouse testes excised by a laser capture microdissection (LCM) in order to quantitate the expression levels of a series of GPx genes including cytosolic GPx (cGPx), gastrointestinal GPx (GI-GPx), plasma GPx (pGPx), and phospholipid hydroperoxide GPx (PHGPx). Frozen sections (10 ${\mu}m$) were obtained from normal adult mouse testes. LCM was used to capture all the cells that were grouped into stages I-V, VII-VIII, and IX-XI in cross-sections of seminiferous tubules. The expression level of PHGPx mRNA was remarkably higher than those of other GPx mRNAs in mouse testes. During spermatogenesis, the expressions of GI-GPx, pGPx, and PHGPx mRNAs were highest on stages VII-VIII, began to decrease after stage XI, and showed a lowest level on stage I-V. However, the expressions of cGPx mRNA were highest on stages VII-VIII, and showed a lowest level on stage XI-XI. These findings indicate that GPx genes are expressed differentially on mouse spermatogenesis and also LCM can be an useful tool in cellular quantitative analysis of testes.

Inhibitory Effects on the Enzymes Involved in the Inflammation by the Ethanol Extracts of Plant Foodstuffs (식물성 일반식품 자원의 에탄올 추출물이 염증 효소계에 미치는 영향)

  • Kwon, Eun-Sook;Kim, Il-Rang;Kwon, Hoon-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.348-352
    • /
    • 2007
  • Inflammation is a complex process resulting from a variety of mechanisms. Combined inhibition of the activities of enzymes involved in the process may therefore be considered more important in anti-inflammatory property of plant extracts than any single contribution. In this study, the inhibitory effects of the ethanol extracts of thirty plant foods on the activities of secretory phospholipase $A_{2}$ ($sPLA_{2}$), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and 12-lipoxygenase (12-LOX) were examined. Several legumes, mungbean sprout and some leaf vegetables inhibited the activity of $sPLA_2$, upstream enzyme of inflammation pathway. Only soybean sprout and mungbean sprout significantly inhibited 12-LOX activity. Although most of extracts inhibited the activities of both COX-1 and COX-2, water dropwort and amaranth showed selectivity for the inhibition of COX-2 over COX-1. Especially, mungbean showed anti-inflammatory property at both upstream and downstream of inflammation pathway with relatively low $IC_{50}$ values for $sPLA_{2}$ and COX-2 enzymes. Mungbean sprout exhibited inhibitory effects on all enzymes related to early and late inflammation and soybean sprout suppressed 12-LOX and COX-2 simultaneously, although the activities of these plants were showed at relatively high concentration. Therefore, mungbean, mungbean sprout, and soybean sprout appear to exhibit anti-inflammatory effects by combined inhibition of inflammatory enzymes.

Cell Surface Antigenic Relationship of Pathogenic Mycobacteria (병원성 Mycobacteria의 세포표면항원간의 항원적 상관 관계)

  • Kwon, Hyuk-Han;Saito, Hajime;Kim, Sang-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.5
    • /
    • pp.483-494
    • /
    • 1993
  • Cell surface antigenic relationships between pathogenic mycobacteria have been investigated by the enzyme-linked immunosorbent assay using phenolkilled cells and their rabbits antisera. Homologous and heterologous reactions of Mycobacterium avium-intracellulare antisera before and after homologous and heterologous absorption revealed a close antigenic relationship between strains of the same species and between species if they were members of M. avium(MA)-intracellulare(MI)-scrofulaceum(MG) complex. MAI sera showed a considerable reaction with M. kansasii(MK) and tuberculosis(MTB), but not with the other species. MA(K40004) antiserum reacted with other mycobacteria except few strains of MI and 50~89% of homologous reaction was reduced by heterologous absorption with cells of MI or MS. Intraspecific reaction of MI antisera was natural1y stronger than interspecific reaction and different in extent due to a magnitude of antigenic sharing. Antigenic relationships between N-260D, N-260R, N-260T, and K41014 was somewhat closer than that with N-242D, N-257T, N-28ID, and N-275T. M. nonchromogenicum(MNC) antisera showed a strong interspecific reaction with exception of M. chelonei(MC) and triviale(MTV) to which they reacted weakly or none. Antigenic sharing with M. terrae(MTR) and MG(K30003) was next to intraspecific sharing. NC-3 shared antigens considerably with MA, MC, and M. fortuitum(MF) while NC-11 did not. MTR antisera showed a strong cross-reaction with MI but their homologous reaction was not reduced by MI absorption indicating a paucity of shared antigen of MTR surface. Intraspecific antigenic sharing of course was large with on exception between T-8 and T-13. A considerable amount of antigenic sharing was also found with MNC, MC and MF. Unlike T-8 serum, T-13 antiserum strongly cross-reacted with MA, MG, MK, and MTB. In general, antigenic relationships of mycobacteria, that have been elucidated in this study, well conformed to taxons delineated by the various biological and biochemical means.

  • PDF

Manufacturing and Physicochemical Properties of Wine using Hardy Kiwi Fruit (Actinidia arguta) (다래를 이용한 발효주의 제조 및 이화학적 특성)

  • Park, Kyung Lok;Hong, Sung Wook;Kim, Young Joon;Kim, Soo Jae;Chung, Kun Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2013
  • For the development of hardy kiwi wine, we arranged for the post-maturity of hardy kiwi fruit, treated them with calcium carbonate and a pectinase enzyme complex, investigated the resulting physicochemical properties and conducted a sensory evaluation. The period determined for creating post-maturity in the hardy kiwi fruit was determined as 5 days storage at room temperature following maturity. During this time the yield of fruit juice was increased from 22.1% to 53.5% using 0.1% (v/v) cytolase PCL5 for 2 h at room temperature. 0.1% (w/v) calcium carbonate was also added during the process of aging, for the reduction of the sour taste. The fermentation trial of the hardy kiwi wine was prepared using water (25% or 50%), sugar ($24^{\circ}brix$), 0.1% (w/v) $CaCO_3$, 0.1% (v/v) cytolase PCL5, $K_2S_2O_5$ (200 ppm), and yeast ($1.5{\times}10^7$ cell/ml). Fermentation then occurred for 2 weeks at $20^{\circ}C$. The pH value, total acidity, alcohol, and reducing sugar content of the resulting hardy kiwi wines of 25% (v/w) and 50% (v/w) water, were in a range of pH 3.4-3.7, 1.12-1.21%, 14.3-14.4%, and 15-16 g/l, respectively. Citric acid and fructose constituted the major organic acids and the free sugar of the 25% and 50% hardy kiwi wine, respectively. Volatile flavor components, including 10 kinds of esters, 8 kinds of alcohols, 5 kinds of acids, 3 kinds of others and aldehydes, were determined by GC analysis. The results of sensory evaluation demonstrated that 50% hardy kiwi wine is more palatable than 25% hardy kiwi wine.

Report on the Effects Lipemic Specimen in Anti-ds DNA Antibody Test (Anti-ds DNA 항체 검사 시 Lipemic 검체의 영향에 관한 보고)

  • Cheon, Jun Hong;Kim, Whe Jung;Kim, Sung Ho;Moon, Hyoung Ho;Yoo, Seon Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.153-157
    • /
    • 2014
  • Purpose: SLE (systemic lupus erythematosus) is an inflammatory autoimmune disease, characterized by various autoantibody. The detection of Anti double-stranded DNA (Anti-ds DNA) is important in the diagnostics of SLE, and include the American College of Rheumatology (ACR) diagnostic criteria for SLE. Also SLE disease activity and correlativity with the level Anti-ds DNA antibody have been reported and Anti-ds DNA antibody quantitative test is very useful for tracing before and after SLE treatment. When These Anti-ds DNA antibody test (Farr assay: $^{125}I$ labeled ds-DNA and bound Anti-ds DNA antibodies complex in serum is precipitated by ammonium sulfate and used to centrifugation, measured it) inhaled supernatant after centrifugation, a lipemic specimen does not facilitate the formation of precipitate and also occurs situation was inhaled with precipitate. To solve these problems, The Influence of the degree of lipemic specimen was evaluated. Materials and Methods: September 2012 to February 2013, We selected lipemic samples (n=81) of specimen commissioned by Anti-ds DNA antibody test. Lipemic samples were done pre-treatment (high-speed centrifugation: 14,000 rpm 5 mins) used a micro-centrifuge (Eppendorf Model 5415D). At the same time lipemic specimen and pre-treatment samples were performed Anti-ds DNA antibody test (Anti-ds DNA kit, Trinity Biotech, Ireland). Statistical analysis were analyzed Pearson's correlation coefficients and regression and paired t-test, and Difference (%). Results: Experimental group 1 (Lipemic Specimen Anti-ds DNA Ab concentration ${\leq}7IU/mL$) at y=0.368X+4.732, $R^2=0.023$, Pearson's correlation coefficient was 0.154, paired t-test (P=0.003), Difference (%) mean 65.7 and showed a statistically significant difference. Experimental group 2 (Lipemic Specimen Anti-ds DNA Ab concentration ${\geq}8IU/mL$) at y=0.983X+0.298, $R^2=0.994$, Pearson's correlation coefficient showed 0.997, paired t-test (P=0.181), Difference (%) mean -5.53 made no statistically significant difference. Conclusion: Lipemic sample of low Anti-ds DNA Ab concentration (2.5-7 IU/mL) and the result is obtained pre-treatment (high-speed centrifugation: 14,000 rpm 5 mins) were made a significant difference statistically. Anti-ds DNA is one of the primary auto-antibodies present in patients with SLE, and remain an important diagnostic test for SLE. Therefore, we recommend preprocessing (high-speed centrifugation: 14,000 rpm 5 mins) in order to exclude the influence of lipemic specimen.

  • PDF

Quality characteristics of fermented soybean products produced by lactic acid bacteria isolated from traditional soybean paste (전통 장류 유래 유산균을 이용한 콩 발효물의 품질특성)

  • Lee, Sun Young;Seo, Bo Young;Eom, Jeong Seon;Choi, Hye Sun
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.187-195
    • /
    • 2017
  • This study evaluated quality characteristics of soybean fermented by selected lactic acid bacteria, which were the enzyme strains with high antimicrobial activities isolated from traditionally prepared soybean paste. We determined total aerobic and lactic acid bacteria counts, protease and amylase activities, reducing sugar and amino-type nitrogen contents, and the amounts of amino acids, organic acids, and aroma-compounds. The total aerobic bacteria counts in soybean fermented with strain I13 ($7.75{\times}10^9CFU/mL$) were the highest among all the strains analyzed. Lactic acid bacteria numbers were $2.85{\times}10^9$ to $4.35{\times}10^9CFU/mL$ in soybean fermented with isolates. Amylase and protease activities of the JSB22 sample were the highest among all sample. Reducing sugar and amino-type nitrogen contents of soybean fermented with JSB22 (1.23%, 94.52 mg%) were highest. Total amino acid content of the samples was 15.88-17.62%, and glutamic acid, aspartic acid, leucine, lysine, and arginine were the major amino acids. Lactic acid (0.82-3.65 g/100 g), oxalic acid (22.74-63.57 mg/100 g), and fumaric acid (2.88-6.33 mg/100 g) were predominant organic acids. A total of 39 volatile aroma-compounds were identified, including 2 esters, 5 ketones, 7 alcohols, 14 hydrocarbons, 2 heterocyclic compounds, 4 acids, and 5 miscellaneous compounds. These results represent useful information for the development of a starter (single or complex) and will be used for production of functional fermented soybean foods.

Amino Acid Biosynthesis and Gene Regulation in Seed (종자내 아미노산 합성 조절 유전자에 관한 연구)

  • ;;;;;Fumio Takaiwa
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.61-74
    • /
    • 1996
  • Human and monogastric animals can not synthesize 10 out of the 20 amino asids and therefor need to obtain these from their diet. The plant seed is a major source of dietary protein. It is particular important in their study to increase nutritional quality of the seed storage proteins. The low contents of lysine, asparagine and threonenein various cereal seeds and of cystein and methionine. In legume seeds is due to the low proportions of these amino acids in the major storage proteins, we have tried to apply the three strategies; (1) mutagenesis and selection of specific amino acid analogue resistance, (2) cloning and expression study of lysine biosynthesis related gene, (3) transfomation of lysine rich soybean glycinin gene. The 5-methyltryptophan (5MT) resistant cell lines, SAR1, SAR2 and SAR3 were selected from anther derived callus of rice (Oryza sativa L. "Sasanishiki"). Among these selected cell lines, two (SAR1 and SAR3) were able to grow stably at 200 mg/L of 5MT. Analysis of the freed amino acids in callus shows that 5MT resistant cells (SAR3) accumulated free tryptophan at least up to 50 times higher than those that of the higher than of SAS. These results indicated that the 5MT resistant cell lines are useful in studies of amino acid biosynthesis. Tr75, a rice (Oryza sativa L., var. Sasanishiki) mutant resistant to 5MT was segregated from the progenies of its initial mutant line, TR1. The 5MT resistant of TR75 was inherited in the M8 generations as a single dominant nuclear gene. The content of free amino acids in the TR75 homozygous seeds increased approximately 1.5 to 2.0 fold compared to wild-type seeds. Especially, the contents of tryptophan, phenylalanine and aspartic acid were 5.0, 5.3 and 2.7 times higher than those of wild-type seeds, respectively. The content of lysine is significantly low in rice. The lysine is synthesized by a complex pathway that is predominantly regulated by feedback inhibition of several enzymes including asparginase, aspatate kinase, dihydrodipicolinat synthase, etc. For understanding the regulation mechanism of lysine synthesis in rice, we try to clone the lysine biosynthetic metabolism related gene, DHPS and asparaginase, from rice. We have isolated a rice DHPS genomic clone which contains an ORF of 1044 nucleotides (347 amino acids, Mr. 38, 381 daltons), an intron of 587 nucleotides and 5'and 3'-flanking regions by screening of rice genomic DNA library. Deduced amino acid sequence of mature peptide domain of GDHPS clone is highly conserved in monocot and dicot plants whereas that of transit peptide domain is extremely different depending on plant specie. Southern blot analysis indicated that GDHPS is located two copy gene in rice genome. The transcripts of a rice GDHPS were expressed in leaves and roots but not detected in callus tissues. The transcription level of GDHPS is much higher in leaves indicating enormous chloroplast development than roots. Genomic DNA clones for asparaginase genes were screened from the rice genomic library by using plaque hybridization technique. Twelve different genomic clones were isolated from first and second screening, and 8 of 12 clones were analyzed by restriction patterns and identified by Southern Blotting, Restriction enzyme digestion patterns and Southern blot analysis of 8 clones show the different pattern for asparaginase gene. Genomic Southern blot analysis from rice were done. It is estimated that rice has at least 2-3 copy of asparaginase gene. One of 8 positive clones was subcloned into the pBluescript SK(+) vector, and was constructed the physical map. For transformation of lysine rich storage protein into tobacco, soybean glycinin genes are transformed into tobacco. To examine whether glycinin could be stably accumulated in endosperm tissue, the glycinin cDNA was transcriptionally fused to an endosperm-specific promotor of the rice storage protein glutelin gene and then introduced into tobacco genomic via Agrobacterium-mediated transformation. Consequently the glycinin gene was expressed in a seed-and developmentally-specific manner in transgenic tobacco seeds. Glycinin were targeted to vacuole-derived protein bodies in the endosperm tissue and highly accumulated in the matrix region of many transgenic plant (1-4% of total seed proteins). Synthesized glycinin was processed into mature form, and assembled into a hexamer in a similar manner as the glycinin in soybean seed. Modified glycinin, in which 4 contiguous methionine residues were inserted at the variable regions corresponding to the C - teminal regions of the acidic and basic polypeptides, were also found to be accumulated similarly as in the normal glycinin. There was no apparent difference in the expression level, processing and targeting to protein bodies, or accumulation level between normal and modified glycinin. glycinin.

  • PDF

Diagnostic Significance of the Serologic Test Using Antigen of Mycobacterium Tuberculosis for Antibody Detection by ELISA (결핵항원에 대한 혈청학적 검사와 진단적 유용성)

  • Park, Jae-Min;Park, Yeon-Soo;Chang, Yeon-Soo;Kim, Young-Sam;Ahn, Kang-Hyun;Kim, Se-Kyu;Chang, Joon;Kim, Sung-Kyu;Lee, Won-Young;Cho, Shang-Rae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.2
    • /
    • pp.271-279
    • /
    • 1998
  • Background: Diagnosis by direct microscopy and/or by culture of the Mycobacterium tuberculosis from body fluids or biopsy specimens is "Gold standard". However, the sensitivity of direct microscopy after Ziehl-Neelsen staining is relatively low and culture of mycobacteria is time consuming. Detection of mycobacterial DNA in clinical samples by the polymerase chain reaction is highly sensitive but laborious and expensive. Therefore, rapid, sensitive and readily applicable new tests need to be developed. So we had evaluated the clinical significance of serologic detection of antibody to 38 kDa antigen, which is known as the most specific to the M. tuberculosis complex, and culture filtrate antigen by ELISA in sputum AFB smear negative patients. Method: In this study, culture tests for acid fast bacilli with sputa or bronchial washing fluids of 183 consecutive patients who were negative of sputum AFB smear were performed. Simultaneously serum antibodies to 38 kDa antigen and unheated culture filtrate of M. tuberculosis were detected by an ELISA method. Results: The optical densities of ELISA test with 38 kDa and culture filtrate antigen were significantly higher in active pulmonary tuberculosis cases than in non tuberculous pulmonary diseases (p<0.05), but in patients with active pulmonary tuberculosis, those of the sputum culture positive patients for M. tuberculosis were not significantly different from those of the sputum culture negative cases(p>0.05). In the smear-negative active pulmonary tuberculosis patients, the sensitivity of the ELISA using 38 kDa antigen and culture filtrate was 20.0% and 31.4%. respectively. The specificity was 95.3% and 93.9%. respectively. Conclusion : In active pulmonary tuberculosis but smear negative, the serologic detection of antibody to 38 kDa antigen and culture filtrate by ELISA cannot substitute traditional diagnostic tests and does not have clinically significant role to differenciate the patient with active pulmonary tuberculosis from other with non-tuberculous pulmonary diseases.

  • PDF