• Title/Summary/Keyword: Enzyme Kinetics

Search Result 224, Processing Time 0.028 seconds

High Throughput Screening for Searching a New Inhibitors of Acetolactate Synthase (Acetolactate synthase에 대한 고효율 활성 측정방법 및 신규 저해제 탐색)

  • Park, S.H.;Lee, K.H.;Choi, J.S.;Pyon, J.Y.;Cho, K.Y.;Hwang, I.T.
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.41-46
    • /
    • 2001
  • This study was conducted to develop a high throughput system for screening acetolactate synthase(ALS) inhibitors, and to detect basic mother molecules for developing new novel herbicide candidates. The high throughput screening (HTS) method using 96-well plate and microplate reader was developed. This method is 8 times more effective than basic technique in one cycle per person. Futhermore, considering for less than 1/10 volume of materials required for ALS test and enzyme kinetics with 16 times faster speed compared to those of former procedure, this HTS method has more than 100 times higher efficacy than basic system in a consecutive procedure. We discovered 11 new ALS inhibitors such as 2-oxoglutaric acid, aminooxyacetic acid, azelaic acid, citric acid, cyanuric fluoride, itaconic acid, malonic acid, niclosamide, oxalic acid, glyoxylic acid, and suramin from 107 commercial plant-specific inhibitors using this technique. We hope these results might be useful to discover lead compounds for developing new novel herbicide candidate.

  • PDF

Binding of Lichen Phenolics to Purified Secreted Arginase from the Lichen Evernia prunastri

  • Legaz, Maria-Estrella;Vicente, Carlos;Pedrosa, Mercedes M.
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.194-200
    • /
    • 2001
  • Secreted arginase from Evernia prunastri thallus has been purified 616-fold from the incubation medium. Purified arginase was resolved as only one peak in a capillary electrophoresis with a pI value of 5.35. The protein contained high amounts of acidic amino acids, such as Asx and Glx, and a relatively high quantity of Ser and Gly. The molecular mass of native, purified arginase was estimated as about 26 kDa by SE-HPLC. Substrate saturated kinetic showed a typical Michaelis-Menten relationship with a K_m value of 3.3 mM L-arginine. Atranorin behaved as a mixed activator of the enzyme (apparent $K_m$ = 0.96 mM); whereas evernic and usnic acid were revealed as non competitive inhibitors (apparent $K_m$ values were 3.16 mM and 3.05 mM, respectively). Kinetics of atranorin binding indicated that saturation was reached from 0.18 ${\mu}mol$ of the total atranorin and the occurrence of multiple sites for the ligand. This agrees with a possible aggregation of several enzyme subunits during the interaction process. A value of binding sites of about 12 was obtained. The binding of evernic acid was saturated from 23 nmol of total phenol. The number of binding sites was about 5. The loss of the binding ability of evernic acid could be interpreted as a single negative cooperatively. Usnic acid behaves in a similar way to evernic acid, although the binding saturation occurs at $0.14\;{\mu}moles$ of the ligand. This binding appears to be unspecific, and has 28 usnic acid binding sites to the protein.

  • PDF

Effect of Cimetidine and Phenobarbital on Metabolite Kinetics of Omeprazole in Rats

  • Park Eun-Ja;Cho Hea-Young;Lee Yong-Bok
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1196-1202
    • /
    • 2005
  • Omeprazole (OMP) is a proton pump inhibitor used as an oral treatment for acid-related gastrointestinal disorders. In the liver, it is primarily metabolized by cytochrome P-450 (CYP450) isoenzymes such as CYP2C19 and CYP3A4. 5-Hyroxyomeprazole (5-OHOMP) and omeprazole sulfone (OMP-SFN) are the two major metabolites of OMP in human. Cimetidine (CMT) inhibits the breakdown of drugs metabolized by CYP450 and reduces, the clearance of coad-ministered drug resulted from both the CMT binding to CYP450 and the decreased hepatic blood flow due to CMT. Phenobarbital (PB) induces drug metabolism in laboratory animals and human. PB induction mainly involves mammalian CYP forms in gene families 2B and 3A. PB has been widely used as a prototype inducer for biochemical investigations of drug metabolism and the enzymes catalyzing this metabolism, as well as for genetic, pharmacological, and toxicological investigations. In order to investigate the influence of CMT and PB on the metabolite kinetics of OMP, we intravenously administered OMP (30 mg/kg) to rats intraperitoneally pretreated with normal saline (5 mL/kg), CMT (100 mg/kg) or PB (75 mg/kg) once a day for four days, and compared the pharmacokinetic parameters of OMP. The systemic clearance ($CL_{t}$) of OMP was significantly (p<0.05) decreased in CMT-pretreated rats and significantly (p<0.05) increased in PB-pretreated rats. These results indicate that CMT inhibits the OMP metabolism due to both decreased hepatic blood flow and inhibited enzyme activity of CYP2C19 and 3A4 and that PB increases the OMP metabolism due to stimulation of the liver blood flow and/or bile flow, due not to induction of the enzyme activity of CYP3A4.

Biochemical Characterization of the Dual Positional Specific Maize Lipoxygenase and the Dependence of Lagging and Initial Burst Phenomenon on pH, Substrate, and Detergent during Pre-steady State Kinetics

  • Cho, Kyoung-Won;Jang, Sung-Kuk;Huon, Thavrak;Park, Sang-Wook;Han, Ok-Soo
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.100-106
    • /
    • 2007
  • The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (Km and kcat values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.

Chemical Modification of 5-Lipoxygenase from the Korean Red Potato

  • Kim, Kyoung-Ja
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.172-178
    • /
    • 2000
  • The lipoxygenase was purified 35 fold to homogeneity from the Korean red potato by an ammonium sulfate precipitation and DEAE-cellulose column chromatography. The simple purification method is useful for the preparation of pure lipoxygenase. The molecular weight of the enzyme was estimated to be 38,000 by SDS-polyacrylamide gel electrophoreses and Sepharose 6B column chromatography. The purified enzyme with 2 M $(NH_4)_2SO_4$ in a potassium phosphate buffer, pH 7.0, was very stable for 5 months at $-20^{\circ}C$. Because the purified lipoxygenase is very stable, it could be useful for the screening of a lipoxygenase inhibitor. The optimal pH and temperature for lipoxygenase purified from the red potato were found to be pH 9.0. and $30^{\circ}C$, respectively. The Km and Vmax values for linoleic acid of the lipoxygenase purified from the red potato were $48\;{\mu}M$ and $0.03\;{\mu}M$ per minute per milligram of protein, respectively. The enzyme was insensitive to the metal chelating agents tested (2 mM KCN, 1 and 10mM EDTA, and 1 mM $NaN_3$), but was inhibited by several divalent cations, such as $Cu^{++}$, $Co^{++}$ and $Ni^{++}$. The essential amino acids that were involved in the catalytic mechanism of the 5-lipoxygenase from the Korean red potato were determined by chemical modification studies. The catalytic activity of lipoxygenase from the red potato was seriously reduced after treatment with a diethylpyrocarbonate (DEPC) modifying histidine residue and Woodward's reagent (WRK) modifying aspartic/glutamic acid. The inactivation reaction of DEPC (WRK) processed in the form of pseudo-first-order kinetics. The double-logarithmic plot of the observed pseudo-first-order rate constant against the modifier concentration yielded a reaction order 2, indicating that two histidine residues (carboxylic acids) were essential for the lipoxygenase activity from the red potato. The linoleic acid protected the enzyme against inactivation by DEPC(WRK), revealing that histidine and carboxylic amino acids residues were present at the substrate binding site of the enzyme molecules.

  • PDF

Cryoprotective Effect and Mechanism of Corn Starch Enzyme Hydrolysates on Fish Protein 2. Cryoprotective Mechanism of Corn Starch Enzyme Hydrolysates on Fish Protein (전분가수분해물의 어육단백질 동결변성 방지효과 및 작용기구 2. 옥수수전분가수분해물의 어육단백질에 대한 동결변성 방지 기구)

  • LEE Kang-HO;JUNG Byung-Chun;HONG Byung-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.829-834
    • /
    • 1998
  • It is well known that the native conformation of many proteins can be stabilized by carbohydrates or polyalcohols. However, the mechanism of the stabilization still remains unclear. In the present studies, to characterize the cryoprotective mechanism of corn starch enzyme hydrolysates on fish protin, solubility of hydrolysates, thermal behavior of hydrolysates and actomyosin solution, and enzyme kinetics in frozen system were investigated. The solubility of the hydrolysates increased with the increase in D.E. value. The $T_g^{'}$ of the hydrolysates were linearly correlated with D.E. value and the T-g value of the hydrolysates (D.E. 5,10,15,20) were reported to be $-7.2^{\circ}C\;-8.8^{\circ}C\;-11.9^{\circ}C$, and $-14.3^{\circ}C$, respectively. The results of enzyme experiments showed that the higher the D.E. value, the higher was the rate of reaction in frozen storage ($-12^{\circ}C$). It is found to support the cryostabilization mechanism that the hydrolysats act to enmesh the protein in a glass state where all deteriorative processes are greatly slowed down.

  • PDF

Studies on Steroid Hormone Concentration during the Estrous Cycle in the MediKinetics Micropig®

  • Seong, Hun-Ki;Seo, Kyeong-Seok;Kim, Jeong-Su;Her, Chang-Gi;Kang, Myung-Hwa;Sim, Bo-Woong;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In all mammalian species, progesterone is essential to both the preparation for, and maintenance of, pregnancy. The $20{\alpha}$-hydroxysteroid dehydrogenase ($20{\alpha}$-HSD) enzyme predominantly converts progesterone into its biologically inactive form $20{\alpha}$-hydroxyprogesterone, thereby regulating its activity. Thus, to directly assess sexual maturation in the MediKinetics $micropig^{(R)}$, we analyzed the concentration of the steroid hormones progesterone and estradiol during the estrous cycle. Our results show that the progesterone level exhibited by the analyzed $micorpig^{(R)}$ was low at the beginning of the estrous cycle, and then abruptly increased to $30.32{\pm}10.0ng/mL$ and $46.37{\pm}11.0ng/mL$ by days 9 and 11 of the cycle, respectively. It reached the highest level $55.87{\pm}3.5ng/mL$ on day 13 of the estrous cycle, before decreasing to $46.58{\pm}13.1ng/mL$ and $10.0{\pm}7.6ng/mL$ by days 15 and 17 of the cycle, respectively. In contrast, the estradiol level was shown to be highest ($27.13{\pm}11.2ng/mL$) at the initiation of the estrous cycle, after which point it decreased to $13.29{\pm}6.5ng/mL$ and $10.94{\pm}5.9ng/mL$ by days 4 and 5 of the estrous cycle, respectively. By day 17 of the estrous cycle, the estradiol level decreased to $4.13{\pm}7.6ng/mL$. We anticipate that these results will provide useful information to enable the study of human ovulation and reproductive physiology using the MediKinetics $micoripig^{(R)}$ as a model system. We recommend further investigation to elucidate the functional mechanisms underlying the regulation of sexual maturation in the MediKinetics $micropig^{(R)}$.

A Study on the Kinetic Parameters of Alkaline Phosphatase by Algae (조류에 의한 유기인산염분해효소의 Kinetic Parameters에 관한 연구)

  • Kim, Bom-Chul;Choi, Kwang-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.380-386
    • /
    • 2000
  • Alkaline phosphatase ($AP_{ase}$) activity was studied for the pure cultures and natural communities of phytoplankton. The Michaelis-Menten constant ($K_m$) showed large variation with species. Some green algae showed large $K_m$ ($650\;{\mu}M$ for Selenastrum capriconutum). Chlorella sp. and Nitzschia palea showed smaller Km (respectively1.7, 2.0 HM) than those of other species examined. The extracellular free enzyme in the filtrate of Anabaena flos-aquae showed smaller Km ($52\;{\mu}M$) than that of cellbound form ($276\;{\mu}M$). The $K_m$ ($12.0\;{\mu}M$) of summer phytoplankton in Lake Soyang. when Anabaena sp. was dominant species, was larger than that (1.5 HM) of spring phytoplankton when Asterionella sp. was the dominant. Although maximum activity($V_{max}$) in Lake Soyang was affected by the concentration of DIP within the lake, but the $V_{max}$ always varied not with the DIP concentration of the lake. Induction of $AP_{ase}$ may be more affected by the phosphate content within the cell of phytoplankton than by the concentration of DIP within the lake, The extracellular free $AP_{ase}$ activity accounted for $36{\sim}97%$ of total activity from fall to spring turnover in Lake Soyang. The $K_m$ ($1.1{\mu}3.5\;M$) of extracelluar free enzyme were simillar to those ($0.7{\mu}3.5\;M$) of the total activity. This indicates that the extracelluar free enzyme was derived from phytoplankton.

  • PDF

Purification and characteristics of bromelain from Korean pineapple (한국산 파인애플에서 분리한 bromelain의 정제와 특성)

  • Choi, Cheong;Son, Gyu-Mok;Cho, Young-Je;Chun, Sung-Sook;Lim, Sung-Il;Seok, Yeoung-Ran
    • Applied Biological Chemistry
    • /
    • v.35 no.1
    • /
    • pp.23-29
    • /
    • 1992
  • Bromelain was purified from Korean pineapple, Ananas comosus, L. The enzyme was purified about 21 fold by DEAF-cellulose ion-exchange chromatography and gel filtration on Sephadex G-150. Purified enzyme was confirmed as active single band by polyacrylamide electrophoresis and the molecular weight was estimated to be about 22,000 by SDS-PAGE. The optimum pH and temperature were 6.0 and $60^{\circ}C$, respectively. The range of its stability to the pH and temperature were respectively 5.0 to 7.0 and below $50^{\circ}C$. It was found that $Mn^{2+}$ increased the enzyme activity, whereas $Mg^{2+}\;and\;Fe^{2+}$ decreased it abruptly. The purified enzyme was inhibited by p-chloromercuribenzoic acid, indicating that reactive SH groups are required for the enzyme activity. The reaction of the enzyme followed typical Michaelis-Menten kinetics with Km value of $5.747{\times}10^{-4}\;M\;and\;Vmax\;of\;131.58\;{\mu}g/min$ for casein. When meat was treated with the enzyme, free soluble nitrogen and amino acid nitrogen increased as enzyme concentration increased.

  • PDF

The influence of sodium hypochlorite concentration on the fibrin structure of human blood clots and transforming growth factor-beta 1 release: an ex vivo study

  • Anisha Mishra ;Velmurugan Natanasabapathy;Nandini Suresh
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.42.1-42.11
    • /
    • 2022
  • Objective: This study investigated the effects of various concentrations of sodium hypochlorite (NaOCl) on human whole-blood clotting kinetics, the structure of the blood clots formed, and transforming growth factor (TGF)-β1 release. Materials and Methods: Human whole blood was collected from 5 healthy volunteers and divided into 4 groups: CG (control, 0.5 mL of blood), BN0.5 (0.5 mL of blood with 0.5 mL of 0.5% NaOCl), BN3 (0.5 mL of blood with 0.5 mL of 3% NaOCl), and BN5.25 (0.5 mL of blood with 0.5 mL of 5.25% NaOCl). The effects of NaOCl on clotting kinetics, structure of fibrin and cells, and release of TGF-β1 were assessed using thromboelastography (TEG), scanning electron microscopy (SEM), and enzyme-linked immunosobent assay, respectively. Statistical analysis was conducted using the Kruskal Wallis and Mann-Whitney U tests, followed by the post hoc Dunn test. A p value < 0.05 indicated statistical significance. Results: The blood samples in BN0.5 and BN3 did not clot, whereas the TEG of BN5.25 showed altered clot formation. Samples from the CG and BN3 groups could only be processed with SEM, which showed that the latter lacked fibrin formation and branching of fibers, as well as clumping of red blood cells with surface roughening and distortion. TGF-β1 release was significantly highest in BN3 when all groups were compared to CG (p < 0.05). Conclusions: Each concentration of NaOCl affected the release of TGF-β1 from blood clots and altered the clotting mechanism of blood by affecting clotting kinetics and cell structure.