The hazards associated with the polycyclic aromatic hydrocarbons (PAHs) are known to be recalcitrant by their structure, but white rot fungi are capable of degrading recalcitrant organic compounds. Phlebia brevispora KUC9045 isolated from Korea was investigated its efficiency of degradation of four PAHs, such as phenanthrene, anthracne, fluoranthene, and pyrene. And the species secreted extracellular laccase and MnP (Manganese dependent peroxidase) during degradation. P. brevispora KUC9045 demonstrated effective degradation rates of phenanthrene (66.3%), anthracene (67.4%), fluoranthene (61.6%), and pyrene (63.3%), respectively. For enhancement of degradation rates of PAHs by the species, Remazol Brilliant Blue R (RBBR) was preferentially supplemented to induce ligninolytic enzymes. The biodegradation rates of the three PAHs including phenanthrene, fluoranthene, and pyrene were improved as higher concentration of Remazol Brilliant Blue R was supplemented. However, anthracene was degraded with the highest rate among four PAHs after two weeks of the incubation without RBBR addition. According to the previous study, RBBR can be clearly decolorized by P. brevispora KUC9045. Hence, the present study demonstrates simultaneous degradation of dye and PAHs by the white rot fungus. And it is considered that the ligninolytic enzymes are closely related with the degradation. In addition, it indicated that dye waste water might be used to induce ligninolytic enzymes for effective degradation of PAHs.
Proceedings of the Korean Society of Fisheries Technology Conference
/
2000.05a
/
pp.145-146
/
2000
The presence of cross-reacting muramidase in Lactobacillus delbrueckii ssp. bulgaricus ULl2 was shown by using monoclonal antibodies raised against an muramidase-2 of Enterococcus hirae ATCC 9790. The separation of protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Western immunoblot confirmed the presence of one cross-reacting band in Enterococcus hirae with an estimated molecular mass of 80 kDa, L. bulgaricus cultured cells harvested after 4 and 12 h were submitted to different autolysin releasing procedures and the liberated products were allowed to cross-react with muramidase-2 antibodies in order to estimate the efficiency of each treatment. Although the cultured cells harvested after 4 h yielded only a slight immune-reaction in Western immunoblots against these enzyme monoclonal antibodies, a strong signal was observed for the cell walls obtained from the same experimental conditions and treated with Triton X-100 surfactant. The same phenomenon was also observed by light fluorescence microscopy. Immune-labelling followed by optical and electron microscopy have shown that the muramidase-2 of L. bulgaricus ULl2 was essentially localized in the innermost part of the cell wall.(omitted)
Journal of the Korean Society of Clothing and Textiles
/
v.20
no.3
/
pp.550-559
/
1996
The Effect of protease (subtilisin Carlsberg) on the removal of hemoglobin as protein soil was studied. The hydrolysis characteristics of subtilisin Carlsberg was examined by electrophoretic techniques. The fragmentation patterns of hemoglobin were analyzed by SDS-PAGE. The hydrolysis efficiency was evaluated by analysis of protein bands shown on gels before and after hydrolysis by using densitometer. 1. The hydrolysis of hemoglobin by subtilisin Carlsberg was increased markedly with the increase of the enzyme concentration. 2. The hydrolysis of hemoglobin by subtilisin Carlsberg was effectively increased in proportion to increasing of the hemoglobin concentration up to a certain point, but it began to decrease above the point. 3. The hydrolysis of hemoglobin by subtilisin Carlsberg followed the first order kinetics, yielding a rate constant of $4.05\time10^{-4}S^{-1}s$. 4. The hydrolysis of hemoglobin by subtilisin Carlsberg was highest at $50^{\circ}C$ and was decreased markedly at $80^{\circ}C$. 5. The hydrolysis of hemoglobin was comparatively low at pH 7.0~8.0, and highest at pH 11.0.
Low-energy processing technology, which enhances the utility of defatted soybean flour (DSF), was developed using extrusion processing. DSF was extruded at different conditions using a twin screw extruder and then, dried at $40^{\circ}C$ for 20 hr. The nitrogen solubility index (NSI), viscosity, water solubility index (WSI), and water absorption index (WAI) of DSF increased after extrusion processing. The density of DSF extrudates decreased with the decrease in water content from 53 to 33% and the increase in extrusion temperature from 110 to $160^{\circ}C$. The addition of NaOH from 1.2 to 1.8% and citric acid from 1 to 5% increased the total solubility (TS) of DSF due to the decrease of protein coiling and hydrophobic bonds formation during extrusion processing. When viscozyme was reacted first, TS, NSI, and soluble carbohydrate content of DSF hydrolysates increased about 12, 6, and 7%, respectively, compared to them reacted with protease first. The TS and NSI of DSF hydrolysates were increased about 15 and 10%, respectively, by extrusion processing at alkaline and acidic pH. Extrusion processing at alkaline and acidic pH contributed the increase of efficiency to hydrolyze DSF samples using enzyme.
For the conversion of WAD to NADP, Immobilized Brevibacterium ammoniagenes cells with NAD kinase was coupled with ATP-generating system by acetate kinase. The membrane permeability of B. ammoniagenes was improved by toluene treatment of cells. The toluene treated B. ammoniagenes cells were immobilized for stable enzyme activity. Partially purified acetate kinase was used in the reaction system. The optimum conditions for the efficient conversion of UAD to WADP by energy-coupled system were investigated. B. ammoniagenes cells treated with toluene for the Improvement of membrane permeability showed 4.5 fold improved permeability in the conversion of NAD to NADP compared with Intact cells. 3% k-carrageenan as the immobilization matrix of B. ammoniagenes showed the best efficiency for the conversion of NAD to NADP The optimum conditions for the WAR to WARP conversion reaction coupled nth ATP-generating system were 10mM acetylphosphate, 5mM ADP 200mM inorganic phosphate, 10mM MgCl2, 250mg/ml Immobilized cells, 49.3mUnit/ml acetate kinase, pH 7.5 and 37$^{\circ}C$. Under the optimum conditions, 72% of 5mM(340mg/ml ) NAD was converted to UADP In 12 hours.
Changes of phycobiliproteins(PBP) quantity and ferredoxin-NADP reductase(FNR) activity were investigated in various light illuminated cyanobacteria, Anabaena variabilis. PBP components were increased under blue light illumination, whereas decreased under red light illumination. PBP contents were twofolds in blue light than in red light. In view of the PBP composition, allophycocyanin(APC) in red light was higher 5.5% and phycoerythrocyanin(PEC) in blue light was higher 2.2% than in white light-illuminated PBP. It was suggested that PBP changes in bule light be the results of regulation of photosysthetic efficiency and protection of photosystem, whereas PBP changes in red light be effected by adaptation of adequate harvesting of light energy in photosystem. Changes of FNR activity were highest in red light, and sequenced lower to blue light and green light. It means that light-dependent production rate of NADP is the highest in red light. The difference of values was larger than that of values in comparison of red and blue light. It was suggested that increasing of FNR activity be due not to the function of isozyme, but to the synthesis of enzymes. Because of NAD/NADP regulation-effect to metabolism, it was considered that FNR activity might influence the metabolism indirectly and explain the probability of regulation in pathways of key enzyme activation. FNR activity was directly proportional to intensity of light. Optimum temperature and pH were about 25℃ and 7.5, respectively.
Bacillus licheniformis SK-1 naturally produces chitinase 72 (CHI72) with two truncation derivatives at the C-terminus, one with deletion of the chitin binding domain (ChBD), and the other with deletions of both fibronectin type III domain (FnIIID) and ChBD. We constructed deletions mutants of CHI72 with deletion of ChBD (CHI72${\Delta}$ChBD) and deletions of both FnIIID and ChBD (CHI72${\Delta}$FnIIID${\Delta}$ChBD), and studied their activity on soluble, amorphous and crystalline substrates. Interestingly, when equivalent amount of specific activity of each enzyme on soluble substrate was used, the product yield from CHI72-${\Delta}$ChBD and CHI72${\Delta}$FnIIID${\Delta}$ChBD on colloidal chitin was 2.5 and 1.6 fold higher than CHI72, respectively. In contrast, the product yield from CHI72${\Delta}$ChBD and CHI72${\Delta}$FnIIID-${\Delta}$ChBD on ${\beta}$-chitin reduced to 0.7 and 0.5 fold of CHI72, respectively. These results suggest that CHI72 can modulate its substrate specificities through truncations of the functional domains at the C-terminus, producing a mixture of enzymes with elevated efficiency of hydrolysis.
Kim, Yool;Han, Kook;Lee, Jung-Min;Kim, Kwang-Sun;Lee, Young-Hoon
Bulletin of the Korean Chemical Society
/
v.28
no.6
/
pp.1010-1014
/
2007
M1 RNA is the catalytic component of RNase P, a tRNA-processing enzyme in Escherichia coli. M1 RNA is produced in the cell by transcription of the rnpB gene and subsequent processing at the 3' end. The 3' flanking region of rnpB contains repeated sets of overlapping sequences coding for small proteins. The issue of whether these proteins are expressed remains to be established. In this study, we showed the expression of a small protein encoded by the first repeat within the 3' flanking region of rnpB. Interestingly, protein expression was increased at lower temperatures. The termination efficiency of rnpB terminators was decreased at lower temperatures, suggesting that antitermination is responsible for enhanced protein expression. Moreover, the purified small protein contained M1 RNA, implying a role as a specific RNA-binding protein.
With the aim to produce ascorbic acid-2-phosphate(AsA-2-P) from L-ascorbic acid(AsA, Vitamin C), nine bacteria conferring the ability to transform AsA to AsA-2-P were isolated from soil samples alongside known strains from culture collections. Most isolates were classified to the genus Brevundimonas by 16S phylogenetic analysis. Among them, Brevundimonas diminuta KACC 10306 was selected as the experimental strain because of its the highest productivity of AsA-2-P. The optimum set of conditions for the AsA-2-P production from AsA using resting cells as the source of the enzyme was also investigated. The optimum cultivation time was 16 h and the cell concentration was 120g/l(wet weight). The optimum concentrations of AsA and pyrophosphate were 550mM and 450mM, respectively. The most effective buffer was 50mM sodium formate. The optimum pH was 4.5 and temperature was $40^{\circ}C$. Under the above conditions, 27.5g/l of AsA-2-P was produced from AsA after 36 h of incubation, which corresponded to a 19.7% conversion efficiency based on the initial concentration of AsA.
Proceedings of the Korea Society of Poultry Science Conference
/
2003.11a
/
pp.89-90
/
2003
Effects of interaction of dietary soybean oil with NaHCO$_3$on the energy metabolism and antioxidants enzyme activity in broiler chicks during acute phase response was studied, Broiler chicks 10 d-old were fed on diets containing 5.0 % of soybean oil with or without 0.5 %(60 meq/kg) of NaHCO$_3$. Then acute phase response were induced by injecting Salmonella typhymurium lipopolysacharide(LPS) In saline 3 times i.p. at alternative day on 16-d of age. Dietary soybean oil with NaHCO$_3$lessened the performance(growth, feed efficiency, calcium balance, excretion of uric acid, and nitrogen balance) -suppressing effect of the LPS effect, but enhanced metabolizable energy value of diet due to increased digestive absorption of energy sources and phosphoruse balance, and decreased activities of SOD in erythrocyte cytosols and circulating ceruloplasmin in plasma. The results indicated dietary energy utilization and electrolytes levels may interact with the antioxidants systems during acute phase response.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.