• Title/Summary/Keyword: Enzyme Efficiency

Search Result 458, Processing Time 0.025 seconds

Simultaneous Degradation of Polycyclic Aromatic Hydrocarbons by Attractive Ligninolytic Enzymes from Phlebia brevispora KUC9045

  • Lee, Aslan Hwanhwi;Lee, Hanbyul;Kim, Jae-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.201-207
    • /
    • 2016
  • The hazards associated with the polycyclic aromatic hydrocarbons (PAHs) are known to be recalcitrant by their structure, but white rot fungi are capable of degrading recalcitrant organic compounds. Phlebia brevispora KUC9045 isolated from Korea was investigated its efficiency of degradation of four PAHs, such as phenanthrene, anthracne, fluoranthene, and pyrene. And the species secreted extracellular laccase and MnP (Manganese dependent peroxidase) during degradation. P. brevispora KUC9045 demonstrated effective degradation rates of phenanthrene (66.3%), anthracene (67.4%), fluoranthene (61.6%), and pyrene (63.3%), respectively. For enhancement of degradation rates of PAHs by the species, Remazol Brilliant Blue R (RBBR) was preferentially supplemented to induce ligninolytic enzymes. The biodegradation rates of the three PAHs including phenanthrene, fluoranthene, and pyrene were improved as higher concentration of Remazol Brilliant Blue R was supplemented. However, anthracene was degraded with the highest rate among four PAHs after two weeks of the incubation without RBBR addition. According to the previous study, RBBR can be clearly decolorized by P. brevispora KUC9045. Hence, the present study demonstrates simultaneous degradation of dye and PAHs by the white rot fungus. And it is considered that the ligninolytic enzymes are closely related with the degradation. In addition, it indicated that dye waste water might be used to induce ligninolytic enzymes for effective degradation of PAHs.

Detection and Localization of a Muramidase type-2 Autolysin in Cell Walls of Lactobacillus delbrueckii ssp. bulgaricus.

  • Kang, Ok-Ju
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.145-146
    • /
    • 2000
  • The presence of cross-reacting muramidase in Lactobacillus delbrueckii ssp. bulgaricus ULl2 was shown by using monoclonal antibodies raised against an muramidase-2 of Enterococcus hirae ATCC 9790. The separation of protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Western immunoblot confirmed the presence of one cross-reacting band in Enterococcus hirae with an estimated molecular mass of 80 kDa, L. bulgaricus cultured cells harvested after 4 and 12 h were submitted to different autolysin releasing procedures and the liberated products were allowed to cross-react with muramidase-2 antibodies in order to estimate the efficiency of each treatment. Although the cultured cells harvested after 4 h yielded only a slight immune-reaction in Western immunoblots against these enzyme monoclonal antibodies, a strong signal was observed for the cell walls obtained from the same experimental conditions and treated with Triton X-100 surfactant. The same phenomenon was also observed by light fluorescence microscopy. Immune-labelling followed by optical and electron microscopy have shown that the muramidase-2 of L. bulgaricus ULl2 was essentially localized in the innermost part of the cell wall.(omitted)

  • PDF

Effect of Pretense (Subtilisin Carlsberg) on the Removal of Blood Protein Soil (I) -The Hydrolysis of Hemoglobin by Subtilisin Carlsberg- (Protease(Subtilisin Carlsberg)가 혈액 단백질 오구의 제거에 미치는 영향(I) -Subtilisin Carlsberg에 의한 헤모글로빈의 가수분해율-)

  • 이정숙;김성연
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.3
    • /
    • pp.550-559
    • /
    • 1996
  • The Effect of protease (subtilisin Carlsberg) on the removal of hemoglobin as protein soil was studied. The hydrolysis characteristics of subtilisin Carlsberg was examined by electrophoretic techniques. The fragmentation patterns of hemoglobin were analyzed by SDS-PAGE. The hydrolysis efficiency was evaluated by analysis of protein bands shown on gels before and after hydrolysis by using densitometer. 1. The hydrolysis of hemoglobin by subtilisin Carlsberg was increased markedly with the increase of the enzyme concentration. 2. The hydrolysis of hemoglobin by subtilisin Carlsberg was effectively increased in proportion to increasing of the hemoglobin concentration up to a certain point, but it began to decrease above the point. 3. The hydrolysis of hemoglobin by subtilisin Carlsberg followed the first order kinetics, yielding a rate constant of $4.05\time10^{-4}S^{-1}s$. 4. The hydrolysis of hemoglobin by subtilisin Carlsberg was highest at $50^{\circ}C$ and was decreased markedly at $80^{\circ}C$. 5. The hydrolysis of hemoglobin was comparatively low at pH 7.0~8.0, and highest at pH 11.0.

  • PDF

Influence of Extrusion on the Solubility of Defatted Soybean Flour in Enzymatic Hydrolysis

  • Cha, Jea-Yoon;Shin, Han-Seung;Cho, Yong-Jin;Kim, Chong-Tai;Kim, Chul-Jin
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.543-548
    • /
    • 2007
  • Low-energy processing technology, which enhances the utility of defatted soybean flour (DSF), was developed using extrusion processing. DSF was extruded at different conditions using a twin screw extruder and then, dried at $40^{\circ}C$ for 20 hr. The nitrogen solubility index (NSI), viscosity, water solubility index (WSI), and water absorption index (WAI) of DSF increased after extrusion processing. The density of DSF extrudates decreased with the decrease in water content from 53 to 33% and the increase in extrusion temperature from 110 to $160^{\circ}C$. The addition of NaOH from 1.2 to 1.8% and citric acid from 1 to 5% increased the total solubility (TS) of DSF due to the decrease of protein coiling and hydrophobic bonds formation during extrusion processing. When viscozyme was reacted first, TS, NSI, and soluble carbohydrate content of DSF hydrolysates increased about 12, 6, and 7%, respectively, compared to them reacted with protease first. The TS and NSI of DSF hydrolysates were increased about 15 and 10%, respectively, by extrusion processing at alkaline and acidic pH. Extrusion processing at alkaline and acidic pH contributed the increase of efficiency to hydrolyze DSF samples using enzyme.

Production of NADP by Immobilized Brevibacterium ammoniagenes and ATP- regenerating System of Acetate Kinase (고정화 Brevibacterium ammoniagenes와 Acetate Kinase의 ATP생성계에 의한 NADP생산)

  • 조정일
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.3
    • /
    • pp.158-168
    • /
    • 1993
  • For the conversion of WAD to NADP, Immobilized Brevibacterium ammoniagenes cells with NAD kinase was coupled with ATP-generating system by acetate kinase. The membrane permeability of B. ammoniagenes was improved by toluene treatment of cells. The toluene treated B. ammoniagenes cells were immobilized for stable enzyme activity. Partially purified acetate kinase was used in the reaction system. The optimum conditions for the efficient conversion of UAD to WADP by energy-coupled system were investigated. B. ammoniagenes cells treated with toluene for the Improvement of membrane permeability showed 4.5 fold improved permeability in the conversion of NAD to NADP compared with Intact cells. 3% k-carrageenan as the immobilization matrix of B. ammoniagenes showed the best efficiency for the conversion of NAD to NADP The optimum conditions for the WAR to WARP conversion reaction coupled nth ATP-generating system were 10mM acetylphosphate, 5mM ADP 200mM inorganic phosphate, 10mM MgCl2, 250mg/ml Immobilized cells, 49.3mUnit/ml acetate kinase, pH 7.5 and 37$^{\circ}C$. Under the optimum conditions, 72% of 5mM(340mg/ml ) NAD was converted to UADP In 12 hours.

  • PDF

Changes of PBP Quantity and FNR Activity by Light Wavelengths in Anabaena variabilis (光波長에 따른 Anabaena variabilis 의 Phycobiliprotein 含量 및 FNR 活性度 變化)

  • Kim, Jung-Suk;Chang, Nam-Kee
    • The Korean Journal of Ecology
    • /
    • v.14 no.1
    • /
    • pp.87-99
    • /
    • 1991
  • Changes of phycobiliproteins(PBP) quantity and ferredoxin-NADP reductase(FNR) activity were investigated in various light illuminated cyanobacteria, Anabaena variabilis. PBP components were increased under blue light illumination, whereas decreased under red light illumination. PBP contents were twofolds in blue light than in red light. In view of the PBP composition, allophycocyanin(APC) in red light was higher 5.5% and phycoerythrocyanin(PEC) in blue light was higher 2.2% than in white light-illuminated PBP. It was suggested that PBP changes in bule light be the results of regulation of photosysthetic efficiency and protection of photosystem, whereas PBP changes in red light be effected by adaptation of adequate harvesting of light energy in photosystem. Changes of FNR activity were highest in red light, and sequenced lower to blue light and green light. It means that light-dependent production rate of NADP is the highest in red light. The difference of values was larger than that of values in comparison of red and blue light. It was suggested that increasing of FNR activity be due not to the function of isozyme, but to the synthesis of enzymes. Because of NAD/NADP regulation-effect to metabolism, it was considered that FNR activity might influence the metabolism indirectly and explain the probability of regulation in pathways of key enzyme activation. FNR activity was directly proportional to intensity of light. Optimum temperature and pH were about 25℃ and 7.5, respectively.

  • PDF

Carboxy-terminus truncations of Bacillus licheniformis SK-1 CHI72 with distinct substrate specificity

  • Kudan, Sanya;Kuttiyawong, Kamontip;Pichyangkura, Rath
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.375-380
    • /
    • 2011
  • Bacillus licheniformis SK-1 naturally produces chitinase 72 (CHI72) with two truncation derivatives at the C-terminus, one with deletion of the chitin binding domain (ChBD), and the other with deletions of both fibronectin type III domain (FnIIID) and ChBD. We constructed deletions mutants of CHI72 with deletion of ChBD (CHI72${\Delta}$ChBD) and deletions of both FnIIID and ChBD (CHI72${\Delta}$FnIIID${\Delta}$ChBD), and studied their activity on soluble, amorphous and crystalline substrates. Interestingly, when equivalent amount of specific activity of each enzyme on soluble substrate was used, the product yield from CHI72-${\Delta}$ChBD and CHI72${\Delta}$FnIIID${\Delta}$ChBD on colloidal chitin was 2.5 and 1.6 fold higher than CHI72, respectively. In contrast, the product yield from CHI72${\Delta}$ChBD and CHI72${\Delta}$FnIIID-${\Delta}$ChBD on ${\beta}$-chitin reduced to 0.7 and 0.5 fold of CHI72, respectively. These results suggest that CHI72 can modulate its substrate specificities through truncations of the functional domains at the C-terminus, producing a mixture of enzymes with elevated efficiency of hydrolysis.

Expression of a Small Protein Encoded by the 3' Flanking Sequence of the Escherichia coli rnpB Gene

  • Kim, Yool;Han, Kook;Lee, Jung-Min;Kim, Kwang-Sun;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.1010-1014
    • /
    • 2007
  • M1 RNA is the catalytic component of RNase P, a tRNA-processing enzyme in Escherichia coli. M1 RNA is produced in the cell by transcription of the rnpB gene and subsequent processing at the 3' end. The 3' flanking region of rnpB contains repeated sets of overlapping sequences coding for small proteins. The issue of whether these proteins are expressed remains to be established. In this study, we showed the expression of a small protein encoded by the first repeat within the 3' flanking region of rnpB. Interestingly, protein expression was increased at lower temperatures. The termination efficiency of rnpB terminators was decreased at lower temperatures, suggesting that antitermination is responsible for enhanced protein expression. Moreover, the purified small protein contained M1 RNA, implying a role as a specific RNA-binding protein.

Optimization of Ascorbic Acid-2-Phosphate Production from Ascorbic Acid Using Resting Cell of Brevundimonas diminuta

  • Shin, Woo-Jung;Kim, Byung-Yong;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.769-773
    • /
    • 2007
  • With the aim to produce ascorbic acid-2-phosphate(AsA-2-P) from L-ascorbic acid(AsA, Vitamin C), nine bacteria conferring the ability to transform AsA to AsA-2-P were isolated from soil samples alongside known strains from culture collections. Most isolates were classified to the genus Brevundimonas by 16S phylogenetic analysis. Among them, Brevundimonas diminuta KACC 10306 was selected as the experimental strain because of its the highest productivity of AsA-2-P. The optimum set of conditions for the AsA-2-P production from AsA using resting cells as the source of the enzyme was also investigated. The optimum cultivation time was 16 h and the cell concentration was 120g/l(wet weight). The optimum concentrations of AsA and pyrophosphate were 550mM and 450mM, respectively. The most effective buffer was 50mM sodium formate. The optimum pH was 4.5 and temperature was $40^{\circ}C$. Under the above conditions, 27.5g/l of AsA-2-P was produced from AsA after 36 h of incubation, which corresponded to a 19.7% conversion efficiency based on the initial concentration of AsA.

급성기 반응 중인 육계 병아리에서 사료중 중탄산소다 함유 대두유 사료는 에너지 이용성과 항산화효소 활성을 변화시킨다

  • 고태송;최철림;임진택;박인경;김상윤
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2003.11a
    • /
    • pp.89-90
    • /
    • 2003
  • Effects of interaction of dietary soybean oil with NaHCO$_3$on the energy metabolism and antioxidants enzyme activity in broiler chicks during acute phase response was studied, Broiler chicks 10 d-old were fed on diets containing 5.0 % of soybean oil with or without 0.5 %(60 meq/kg) of NaHCO$_3$. Then acute phase response were induced by injecting Salmonella typhymurium lipopolysacharide(LPS) In saline 3 times i.p. at alternative day on 16-d of age. Dietary soybean oil with NaHCO$_3$lessened the performance(growth, feed efficiency, calcium balance, excretion of uric acid, and nitrogen balance) -suppressing effect of the LPS effect, but enhanced metabolizable energy value of diet due to increased digestive absorption of energy sources and phosphoruse balance, and decreased activities of SOD in erythrocyte cytosols and circulating ceruloplasmin in plasma. The results indicated dietary energy utilization and electrolytes levels may interact with the antioxidants systems during acute phase response.

  • PDF