• Title/Summary/Keyword: Enzyme

Search Result 14,006, Processing Time 0.041 seconds

Aspergillus niger가 생성하는 생전분 분해효소의 정제와 특성

  • 정만재
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.166-172
    • /
    • 1997
  • Aspergillus niger was selected as a strain producing the potent raw starch hydorlyzing enzyme. These experiments were conducted to investigate the conditions of the glucoa- mylase production, the purification of the enzyme, some characteristics of the purified enzyme and hydrolysis rate on various raw starches such as com, rice, potato, glutinous rice, sweet potato, wheat and barley. The optimum cultural temperature and time for the enzyme production on wheat bran medium were $30^{\circ}C$ and 96hrs, respectively. The respective addition of yeast extract and nutrient broth on wheat bran medium increased slightly the enzyme production. The enzyme was purified by ammonium sulfate fractionation and DEAE-cellulose column chromatography. The specific activity of the purified enzyme was 30.7u/mg-protein and the yield of enzyme activity was 25.8%. The purified enzyme showed a single band on polyacrylamide disc gel electrophoresis and its molecular weight was estimated to be 56,000 by SDS-polyacrylamide disc gel electrophoresis. The isoelectric point for the purified enzyme was pH3.7. The optimum temperature and pH were $65^{\circ}C$ and pH 4.0, respectively. The purified enzyme was stable in the pH range of pH 3.0-9.5 and below $45^{\circ}C$, and its thermal stability was slightly increased by the addition of $Ca^{2+}$. The purified enzyme was activated by $Co^{2+},\;Sr^{2+},\;Mn^{2+},\;Fe^{2+},\;Cu^{2+}$. Raw rice starch, raw corn starch, raw glutinous rice starch, raw sweet potato starch, raw wheat starch and raw barley starch showed more than 90% hydrolysis rate in 48hrs incubation. Even raw potato starch, most difficult to be hydrolyzed, showed 80% hydrolysis rate. The purified enzyme was identified as glucoamylase.

  • PDF

Characterization of D-Xylose Isomerase from Streptomyces albus (Stleptomyces albus의 D-Xylose Isomerase의 성질에 관하여)

  • 김영호;하영칠
    • Korean Journal of Microbiology
    • /
    • v.16 no.2
    • /
    • pp.47-61
    • /
    • 1978
  • Strptomyces albus T-12 which ahd been isolated and identified in the laboratory, was selected for the studies on the cultural conditions on the production of D-xylose iosmerase and the enzymological characteristics using the partially purified enzyme. The best results in the enzyme production came from D-xylose medium than wheat bran. The divalent metla ions as $Co^{2+},\;Fe^{2+},\;Zn^{2+}\;and\;Cu^{2+}$ retard or inhibit the cell-growth at the early stages of mycelia propagations, and T-12 strain is especially sensitive to $Co^{2+}$. After 60 hours of shaking cultivation at $30^{\circ}C$ and 200 rpm, a maximum enzyme activitz, 0.49 enzyme units, was obtained. Cell-free enzyme obtained from mycelia heat-treated in the prescence of 0.5mM $Co^{2+}$, showed a 2.4-fold increase in specific than the enzyme from untreated mycelia. The specific activity of the purified enzyme through Sephadex G-150 columm showed 180 fold to the crude enzyme. The effective activators of the enzyme appeared to be $Mg^{2+}\;and\;Co^{2+}$ ions, and it exhibited the maximal enzyme activity showed at pH 7.0 and at tempersture around $80^{\circ}C$ when $Mg^{2+}\;and\;Co^{2+}$ ions were added. The enzyme isomerized D-glucose, D-xylose, D-ribose, L-arabinose, D-mannose, and L-rhamnose in the present of $Mg^{2+}\;and\;Co^{2+}$ ions as an activatiors. $Mg^{2+}\;and\;Co^{2+}$ ions were non-competitively bound at different allosterix sites of enzyme molecule. $Mg^{2+}(5mM)\;or\;Co^{2+}(1.0mM)$ protected against the thermal denaturations of the enzyme activities. The michelis constant(Km) and $V_{max}$ values of the emzyme for D-glucose and D-xylose were 0.52M, $2.12{\mu}moles/ml{\cdot}min.\;and\;0.28M,\;0.65moles/ml{\cdot}min.$, respectively.

  • PDF

Biochemical Properties of Starch Granule Non-Digestive Enzyme(SGNA) of Bacillus polymyxa No.26

  • Sohn, Cheon-Bae;Kim, Myung-Hee;Bae, Jung-Surl
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.189-196
    • /
    • 1992
  • A $\alpha$-l, 4-D-glucan maltohydrolase $(\beta$-amylase), secreted by the mesophilic aerobic bacterium Bacillus polymyxa No.26, was purified and characterized. The enzyme production was increased after a logarithmic phase of bacterial growth and paralleled with the onset of bacterial sporulation. By applying anion exchange chromatography and gel filtration the enzyme was purified 16.7-fold and had a specific activity of 285.7 units/mg. Two enzyme activities were eluted on a column of DEAE-Sephadex chromatography, and they were designated as E-I for a major enzyme peak and E-II for a minor peak. Of them, E-I enzyme peak was further purified by using gel chromatography. The molecular mass of this enzyme was determined to be 64, 000 daltons and consisted of a single subunit, showing an isoelectric point of 8.9. The enzyme was able to attack specifically the $\alpha$-l, 4-glycosidic linkages in soluble starch and caused its complete hydrolysis to maltose and $\beta$-limited dextrin. This amylolytic enzyme displayed a temperature optimum at $45^\circ{C}$ and a pH optimum at 7.0. The amino acid composition of the purified enzyme was quite similar to the other bacterial $\beta$-amylases reported. Surprisingly, the purified enzyme from this aerobe only exhibited hydrolytic activity on soluble starch, not on starch granules. The degradation of from starch by $\beta$-amylase was greatly stimulated by pullulanase addition. These results differentiated from other $\beta$-amylases reported. Based on a previous result that showed the enzyme system involves in effective degradation of raw starch granules, this result strongly suggested that the purified enzyme (E-I) can be a synergistic part of starch granule-digestion and E-II plays a crucial role in digestion of starch granules.

  • PDF

Purification and Enzyme Property of a Cell-Wall Lytic Enzyme Produced by Bacillus sp. LM-8 against Lactobacillus plantarum. (Bacillus sp. LM-8이 생산하는 Lactobacillus plantarum 용균 효소의 정제 및 효소 특성)

  • 마호우;신원철
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • Purification and characterization of enzyme property of a cell-wall lytic enzyme against Lactobacillus plantarum were carried out. Final specific activity of purified enzyme was 5.8 units/mg and purity of the enzyme was increased 8.3 fold compared with the enzyme activity in culture broth. The molecular weight of purified enzyme was estimated to be 60,000 kDa by gel filtration and SDS-polyacrylamide gel electrophoresis. Optimal pH and temperature for the activity of this enzyme were 3.0 and 4$0^{\circ}C$, respectively. The cell-wall lytic enzyme activity was maintained at 3$0^{\circ}C$ when treating the enzyme for 30 mins, whereas the activity was decreased to 80% of the maximum level at 4$0^{\circ}C$ The enzyme activity exhibited good stability at the range of pH 4~7.

Conditions for the Production of Amylase and Protease in Making Wheat flour Nuluk by Rhizopus japonicas T2 (Rhizopus japonicus T2에 의한 밀가루 누룩 제조시 Amylase와 Protease의 생산조건)

  • 소명환
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.2
    • /
    • pp.96-102
    • /
    • 1993
  • A Nuluk, a Korean traditional koji for brewing, was made with wheat flour and Rhizopus japonicus T2 which had a good aroma and strong abilities in producing saccharogenic and proteolytic enzymes, and cultural conditions for the production of those two enzymes were tested. The productivity of saccharogenic enzyme was markedly improved when Nuluk was made with unsteamed wheat flour as compared with that with steamed one, but that of acid protease was reduced. The addition of water containing 0.5% hydrochloric acid was unfavorable for the production of saccharogenic enzyme and neutral protease. The optimum ratio of water added to wheat flour for the production of saccharogenic enzyme and proteolytic enzyme was 28% on the basis of wheat flour. The productivity of saccharogenic enzyme was enhanced "when the Nuluk was molded after 10~20 hours precultivation but that of proteolytic enzyme was reduced as compared with no molding. The optimum temperature for the production of saccharogenic enzyme was 28f and that of proteolyic enzyme was also 28$^{\circ}C$. The optimum cultural time for the production of saccharogenic enzyme was 36 ~72 hours at 3$0^{\circ}C$ and that of proteolytic enzyme was 36 hours.ours.

  • PDF

Effect of Fabrication Method of Anode on OCV in Enzyme Fuel Cells (효소연료전지의 Anode 제조조건이 OCV에 미치는 영향)

  • Kim, Young-Sook;Lee, Se-Hoon;Chu, Cheun-Ho;Na, Il-Chai;Lee, Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.6-10
    • /
    • 2015
  • Enzyme fuel cells were composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase as a enzyme and ferrocene as a mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 9.0 MPar for enzyme anode pressing process. Highest OCV was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7mol/l in anode substrate solution and enzyme activity of anode was stable for 7 days.

Purification and Characterization of a Bacteriolytic Enzyme from Alkalophilic Bacillus sp.

  • Jung, Myeong-Ho;Kang, In-Soo;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.102-110
    • /
    • 1991
  • Alkalophilic Bacillus sp. YJ-451, which was isolated from soil at several area in Korea, produced a novel type of bacteriolytic enzyme (cell wall peptidoglycan hydrolase) extracellulary. The cell wall hydrolytic activity was identified as a clear zone on sodium dodecyl sulfate polyacrylamide gel electrophoresis containing 0.2% (w/v) cell wall of Bacillus sp. as substrate. This enzyme was successively purified 66 fold with 3.2% yield in culture broth by ammonium sulfate precipitation, CM-cellulose column chromatography, and gel filtration, followed by hydroxylapatite column chromatography. The molecular weight of the purified enzyme was estimated to be 27,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration column chromatography. The optimum pH and temperature for the activity of the enzyme were pH 10.0 and $50^{\circ}C$, respectively. The enzyme was stable between pH 5.0 and 10.0 and up to $40^{\circ}C$. Among the microorganisms used in this experiment the enzyme was active against most of gram negative strains and the genus Bacillus such as B. megaterium, B. licheniformis, B. circulans, B. pumilus, B. macerans, B. polymyxa. The release of dinitrophenylglutamic acid but not reducing group from cell wall peptidoglycan digested by the enzyme suggested that the enzyme is a kind of peptidase which hydrolyzes the peptide bond at the amino group of D-glutamic acid in the peptidoglycan.

  • PDF

Thermostability of Superoxide Dismutase from Cucumber(Cucumis sativa) (오이 추출물에 존재하는 Superoxide Dismutase의 열안정성)

  • 박인식;김은애;김기남;길지은;이민경;김석환;서정식
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1105-1109
    • /
    • 1998
  • The superoxide dismutase(SOD) in peeled pericarp of cucumber was most stable at pH 8.0 and relatively stabe between pH 5.0 and 9.0. The enzyme was stable up to 6$0^{\circ}C$ and retained 12% by heat treatment at 10$0^{\circ}C$ for 5 min. At pH 2.0, the peeled pericarp enzyme activity was decreased to 10% by incubation for 3 hrs. However, the enzyme activity was increased above 25% after incubating the enzyme at pH 7.0 for 6 hrs. Retention of SOD activity in cucumber by various heating methods was also measured. The residual SOD activities of peeled pericarp and whole cucumber was estimated to be 25% and 27% after blanching(2 min), respectively. The skin enzyme retained 53% of its activity after steaming (3 min). When the peeled pericarp enzyme was incubated at 4$^{\circ}C$ for 20 days, the enzyme activity remained about 81%. However, when the enzyme incubated at 3$0^{\circ}C$ for 20 days, the peeled pericarp enzyme activity decreased to 17% of its original activity. The enzyme activity of peeled pericarp cucumber was not changed after exhaustive dialysis for 3 days, which indicated that the SOD activity in cucumber seems to have molecular weight above 12,000.

  • PDF

A Study on the Remaining Concentration of Pesticides in Tap Water of Taejon City by Ellman′s Enzyme Method and the Countermeasure (Ellman 효소법에 의한 대전시 상수도내 살충제의 잔류농도 결정 및 그 대책에 관한 연구)

  • 이봉호;이영순;전종한
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 1999
  • The degree of pesticides accumulation in tap water in Taejon from June 1995 to Apr 1996 was measured by Ellman's coupled enzyme assay. Since organic phosphate and carbamate pesticides specifically inhibit the neurotransmitter modulating enzyme acetylcholinesterase(AChE), the enzyme activity can be used as a diagnosis for the pesticides accumulation in water and various samples. During the period of this study, the enzyme activity was changed almost every week. The lowest enzyme activity was 64 % of that of the control reaction and there are several days showing about 100 % enzyme activity. In general, the enzyme activity is higher in summer than other seasons especially early spring times. The pH value of tap water was very close to neutral(pH 7.0) and it seems that the enzyme activity was not affected by the small pH changes. Either boiling of tap water or addition of NaOH solution decomposed the pesticide components. These results show that AChE assay is a convenient, sensitive, and reliable method for detection of pesticides in water samples.

  • PDF

Enzyme Activity of Cenococcum geophilum Isolates on Enzyme-specific Solid Media

  • Obase, Keisuke;Lee, Sang-Yong;Chun, Kun-Woo;Lee, Jong-Kyu
    • Mycobiology
    • /
    • v.39 no.2
    • /
    • pp.125-128
    • /
    • 2011
  • Enzyme activities of Cenococcum geophilum isolates were examined on enzyme- specific solid media. Deoxyribonuclease, phosphatase, and urease were detected in all isolates, whereas cellulase was not detected in any of the isolates. Variations in enzyme activities of amylase, caseinolysis, gelatinase, lipase, and ribonuclease were observed among isolates.