• Title/Summary/Keyword: Enzyme%24H_2%24 production

Search Result 197, Processing Time 0.031 seconds

Production of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Malassezia pachydermatis G-14

  • Jeong, Seung-Chan;Kim, Jae-Ho;Kim, Na-Mi;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.33 no.3
    • /
    • pp.142-146
    • /
    • 2005
  • To produce a novel antihypertensive angiotensin I-converting enzyme (ACE) inhibitor from yeast, a yeast isolate, designated G-14 showing the highest ACE inhibitory activity was obtained and identified as Malassezia pachydermatis based on morphological, biochemical and cultural characteristics. The maximal extracellular ACE inhibitor production was obtained from M. pachydermatis G-14 when the strain was cultured in YEPD medium containing 0.5% yeast extract, 3.0% peptone and 2.0% glucose at $30^{\circ}C$ for 24 h and the final ACE inhibitory activity was 48.9% under the above condition.

Production and Characterization of Branched Maltodextrin (분지 말토덱스트린의 생산 및 특성)

  • Yook, Cheol;Kim, Jae-Sik;Kim, Jeong-Ryul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.172-177
    • /
    • 1999
  • Branched maltodextrin which contains branched sugars as well as linear sugars was produced by Tranzyme L 500. Branched sugar content increased as reaction time between substrate(D.E. 19) and 0.05% of Tranzyme L 500 at pH 5.5, 55oC increased. Branched sugar content was 14.9% at 24 hr of reaction and reached 27% after 60 hr. Total branched sugar content increased regardless of substrate D.E. as enzyme concentration increased. However, when concentrations of enzyme were 0.1, 0.2%, production of branched sugars of which content were 46.6%, 52.6% respectively at those enzyme concentrations, was higher at D.E. 19 than any other conditions.

  • PDF

Production of Extracellular Amylase by Bacillus thuringiensis subsp. kurstaki HD-1 and its Characteristics (Bacillus thuringiensis subsp. kurstaki HD-1의 아밀라제 생산과 특성 연구)

  • 김수영;유관희;이영주;이형환
    • Korean journal of applied entomology
    • /
    • v.28 no.2
    • /
    • pp.69-75
    • /
    • 1989
  • The extracellular amylase production by Bacillus thuringiensis subsp. kurstaki HD-l in amylase production media and its characteristics were investigated. The amylase production was highest in the medium composed of 0.2% soluble starch, 1.0% Bacto-peptone, 0.3% beef extract, 0.3% yeast extract, 0.5% NaCl, 0.3% $K_2HPO_4$, 0.1% $KH_2PO_4$, 0.012% $CaCl_2$.$2H_2O$, 0.005% $MnSO_4$.$H_2O$, and 0.03% $MgSO_4$.$7H_2O$. The amylase activity was inhibited by 50mM EDT A. The enzyme was optimally active from pH 6.5 to 7.0 at $55^{\circ}C$, The specific activity of the enzyme in the ethanol precipitate was 2.01 units/mg, and the Km value was approxi-mately 0.8 mg/ml.

  • PDF

Continuous Production of Fructose-Syrups from Inulin by Immobilized Inulinase from Recombinant Saccharomyces cerevisiae

  • Kim, Byung-Woo;Kim, Han-Woo;Nam, Soo-Wan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.90-93
    • /
    • 1997
  • Recombinant exoinulinase was partially purified form the culture supernatant of S.cerevisiae by(NH4)2SO4 precipitation and PEG treatment. The purfied inulinase was immobilized onto Amino-cellulofine with glutaraldeyde as a cross-linking agent. Immobilization yield based on the enzyme activity was about 15%. Optimal pH and temperature of immobilized enzyme were found to be 5.0 and 6$0^{\circ}C$, respectively. The enzyme activity was stably maintained in the pH ranges of 4.5 to 6.0 at 6$0^{\circ}C$. 100% of enzyme activity was observed even after incubation for 24 hr at 6$0^{\circ}C$. In the operation of a packed-bed reactor containing 412U inulinase, dahalia inulin of 7.5%(w/w) concentration was completely hydrolyzed at flow rate of 2.0mL/min at 6$0^{\circ}C$, resulting in a volumetric productivity of 693 g-reducing sugars/L/h. Under the reaction conditions of 1.0mL/min flow rate with 2.5% inulin at 6$0^{\circ}C$, the reactor was successfully operated over 30 days without loss ofinulinase activity.

  • PDF

Production of 2-O--$\alpha$-D-Glucopyranosyl L-Ascorbic Acid by Cyclodextrin Glucanotransferase from Bacillus sp. JK-43 (Bacillus sp. JK-43의 Cyclodextrin Glucanotransferase에 의한 2-O-$\alpha$-D-Glucopyranosyl L-Ascorbic Acid 생산에 관한 연구)

  • 전홍기;배경미;김영희;김성구
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • The 2-O-$\alpha$-D-glucopyranosyl L-ascorbic acid (AA-2G) which was enzymatically glucosylated with the cyclodextrin glucanotransferase (CGTase) [EC 2.4.1.19] from Bacillus sp. JK-43 has been reported previously. The presnet experiments examined the optimal conditons for the productio of AA-2G from AA and soluble starch, and characterized the properties of the CGTase from Bacillus sp. JK-43. The reaction mixture for the maximal production of AA-2G was followings; 12% total substrate concentration, 1,400 usits/mL of CGTase and a mixing ratio of 2 : 3(g or AA : g of soluble starch). Under this condition, 1.76mM of AA-2G, which corresponded to 2.53% yield based on AA, was produced after incubation for 24hrs at 45$^{\circ}C$ (pH 5.5). The optimum pH and temperature for the CGTase activity were 6.0 and 45$^{\circ}C$, respectively. The enzyme was stable at pH 5.5 to 9.5, and at temperature up to 5$0^{\circ}C$. The thermostability of the enzyme could be enhanced up to 6$0^{\circ}C$ by the addition of 30mM CaCl2.

  • PDF

Studies on the Microbial Decomposition of Cellulosic Materials - Part Ⅰ. Isolation of Cellulase-producing Microorganisms and Characterization of the Enzyme Activities - (섬유소분해(纖維素分解)의 미생물학적(微生物學的) 연구(硏究) - 제1보(第一報). 섬유소분해(纖維素分解) 미생물(微生物)의 분리(分離) 및 효소특성연구(醉素特性硏究) -)

  • Kim, Kyo-Chang;Kim, Chi-Kyung;Kim, Chang-Han
    • Applied Biological Chemistry
    • /
    • v.24 no.2
    • /
    • pp.85-93
    • /
    • 1981
  • For the utilization of natural cellulosic materials by microorganisms, a potent cellulase-producing microorganism was isolated and identified as Trichoderma spp. Rice straw used as a substrate in this study was preliminarily treated with chemical solvents and/or additionally treated with acids and by heat, and then examined with the cellulase produced by the organism. Better results in sugar production by decomposing the straw cellulose were obtained, when the cellulase was produced by cultivating the organism in the selection medium, pH 5.0, for 5 days, and when the pretreated straw substrate was additionally treated with 0.1% $H_2SO_4$ sulfuric acid at $120^{\circ}C$ for 1 hour. The enzyme production was increased by about 20%, when 0.5% urea 0.5% phosphate, 0.1% meat extract, or 5% orange peel was added into the culture medium. For the practical purposes, the sugar production from the rice straw by the cellulase-producing microorganism can be improved by extending the reaction time of the enzyme up to 24 hr or longer.

  • PDF

Production and Characterization of Extracellular Phospholipase D from Streptomyces sp. YU100

  • Lim, Si-Kyu;Choi, Jae-Woong;Chung, Min-Ho;Lee, Eun-Tae;Khang, Yong-Ho;Kim, Sang-Dal;Nam, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.189-195
    • /
    • 2002
  • Using Streptomyces sp. YU100 isolated from Korean soil, the fermentative production of phospholipase D was attempted along with its purification and characterization studies. When different carbon and nitrogen sources were supplemented in the culture medium, glucose and yeast extract were found to be the best. By varying the concentration of nutrients and calcium carbonate, the optimal culture medium was determined as 2.0% glucose, 1.5% yeast extract, 0.5% tryptone 0.3% calcium carbonate. During cultivation, the strain secreted most of the phospholipase D in the early stage of growth within 24 h. The phospholipase D produced in the culture broth exhibited hydrolytic activity as well as transphosphatidylation activity on lecithin (phosphatidylcholine). In particular, the culture broth showed 8.7 units/ml of hydrolytic activity when cultivated at $28^{\circ}C$ for 1.5 days. The phospholipase D was purified using 80% ammonium sulfate precipitation and DEAE-Sepharose CL-6B column chromatography, which produced a major band of 57 kDa on a 10% SDS-polyacrylamide gel with purity higher than 80%. The enzyme showed an optimal pH of 7 in hydrolytic reaction, and at pH 4 in a transphosphatidylation reaction. The enzyme activity increased until the reaction temperature was elevated to $60^{\circ}C$. The enzyme was relatively stable at high temperatures and neutral pH, but significantly unstable in the alkaline range. Among the detergents tested as emulsifiers of phospholipids, the highest enzyme activity was observed when 1.5% Triton X-100 was employed. However, no inhibitory effect by metal ions was detected. Under optimized reaction conditions, the purified enzyme not only completely decomposed PC to phosphatidic acid within 1 h, but also exhibited higher than 80% conversion rate of PC to PS by transphosphatidylation within 4 h.

Isolation of Anaerobic Cellulolytic Bacteria from the Rumen of Holstein Dairy Cows to Develop Feed Additives for Ruminants (반추동물용 사료첨가제개발을 위한 홀스타인 젖소의 반추위로부터 분리한 혐기성 섬유소 분해균의 특성연구)

  • Choi, Nag-Jin;Lee, Gi-Young;Jeong, Kwang-Hwa;Kim, Chang-Hyun
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.327-343
    • /
    • 2012
  • In order to develop a high cellulolytic direct-fed microorganism (DFM) for ruminant productivity improvement, this study isolated cellulolytic bacteria from the rumen of Holstein dairy cows, and compared their cellulolytic abilities via DM degradability, gas production and cellulolytic enzyme activities. Twenty six bacteria were isolated from colonies grown in Dehority's artificial (DA) medium with 2% agar and cultured in DA medium containing filter paper at $39^{\circ}C$ for 24h. 16s rDNA gene sequencing of four strains from isolated bacteria showed that H8, H20 and H25 strains identified as Ruminococcus flavefaciens, and H23 strain identified as Fibrobacter succinogenes. H20 strain had higher degradability of filter paper compared with others during the incubation. H8 (R. flavefaciens), H20 (R. flavefaciens), H23 (F. succinogenes), H25 (R. flavefaciens) and RF (R. flavefaciens sijpesteijn, ATCC 19208) were cultured in DA medium with filter paper as a single carbon source for 0, 1, 2, 3, 4 and 6 days without shaking at $39^{\circ}C$, respectively. Dry matter degradability rates of H20, H23 and H25 were relatively higher than those of H8 and RF since 2 d incubation. The cumulative gas production of isolated cellulolytic bacteria increased with incubation time. At every incubation time, the gas production was highest in H20 strain. The activities of carboxymethylcellulase (CMCase) and Avicelase in the culture supernatant were significantly higher in H20 strain compared with others at every incubation time (p<0.05). Therefore, although further researches are required, the present results suggest that H20 strain could be a candidate of DFM in animal feed due to high cellulolytic ability.

Development of Nanoenzymes for the Production of Glucose from Seaweed and Various Polysaccharide (해조류 및 다당류로부터 포도당 생산을 위한 나노효소 개발 및 특성)

  • Jin, Lie-Hua;Lee, Jung-Heon
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.453-458
    • /
    • 2010
  • The magnetically separable polyaniline nanofiber enzymes were developed for the recycle of enzyme and enhanced enzyme stability. The stability of enzyme was maintained over 90% for 8 days under room temperature and vigorous shaking conditions (200 rpm). The residual activity of immobilized enzyme was over 60% after 8 days incubation at $55^{\circ}C$. Glucose was produced from various polysaccharides, agarose, curdlan, cellulose, and sea weed, using magnetically separable immobilized enzyme. Glucose production rate with curdlan was 1.2 g/(l h) and showed high decomposition rate due to high mass transfer. After 10 times recycle, the residual activity of immobilized enzyme was over 75%. 1 g/L of glucose was produced with 5 mg of immobilized enzymes.

카라기난 분해효소 생산균의 분리, 동정 및 효소생산 최적 조건

  • Yang, Sung-Tack;Joo, Dong-Sik;Park, Jung-Je;Lee, Jung-Suck;Kim, Myung-Sik;Lee, Eung-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.652-656
    • /
    • 1996
  • The 80 strains which produce carrageenan degrading enzyme were isolated from soils, mud, seaweed, marine moluscus and echonodermata samples. Among them, one isolated strain, which showed the highest activity to produce carrageenan degrading enzyme, was used for this study. The isolated strain was identified as Pseudomonas alcaligenes through its morphological, biochemical, and physiological characteristics. The best conditions for enzyme production were 0.7% nutrient broth and 0.2% carrageenan as nitrogen and carbon source, respectively. The optimal pH, NaCl, temperature and culture time for carrageenan degrading enzyme were 7.0, 1.5%, 30* and 96hrs, respectively.

  • PDF