• Title/Summary/Keyword: Enzymatic yield

Search Result 340, Processing Time 0.027 seconds

Effective Component Contents and Antioxidative Activities of Unripe Apple by Extraction Methods (추출방법에 따른 미숙사과 추출물의 유용성분 함량 및 항산화 활성)

  • Hong, Jeong Jin;Seol, Hui Gyeong;Oh, Ju Youl;Jeong, Eun Ho;Chang, Young Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.2
    • /
    • pp.174-180
    • /
    • 2021
  • The purpose of this study was to determine the optimum extraction method suitable for the availability of biological activities in unripe apples known to be rich in functional components. Unripe apples 'Hongro' picked on May 28th, 2019 were extracted by various extraction methods (hot water, ethanol, enzymatic pre-treatment, ultrasonic wave, and subcritical water) and their extracts were investigated yield, effective component contents, and antioxidant activities. Overall, the yields by the extraction solvent were higher in water than in organic solvent(ethanol) because water-soluble compounds were eluted from a polar solvent. Total phenol contents of the ultrasonic wave (ethanol) extracts were significantly higher in 6 times than hot water extract. Contents of flavonoid were highest in the ethanol extract at 29.14 mg QE/g. Contents of tannin and ursolic acid were also significantly higher in the ultrasonic wave (ethanol) extract. The DPPH radical and ABTS radical scavenging activities were the strongest in the ultrasonic wave (ethanol) extract. Correlation between effective components and antioxidant activities was high in the total phenol content with ABTS and the ursolic acid content with DPPH (p<0.01). The above results suggested that ultrasonic wave (ethanol) extract of unripe apples has the potential to act as a functional material.

Upcycling the Spent Mushroom Substrate of the Grey Oyster Mushroom Pleurotus pulmonarius as a Source of Lignocellulolytic Enzymes for Palm Oil Mill Effluent Hydrolysis

  • Yunan, Nurul Anisa Mat;Shin, Tan Yee;Sabaratnam, Vikineswary
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.823-832
    • /
    • 2021
  • Mushroom cultivation along with the palm oil industry in Malaysia have contributed to large volumes of accumulated lignocellulosic residues that cause serious environmental pollution when these agroresidues are burned. In this study, we illustrated the utilization of lignocellulolytic enzymes from the spent mushroom substrate of Pleurotus pulmonarius for the hydrolysis of palm oil mill effluent (POME). The hydrolysate was used for the production of biohydrogen gas and enzyme assays were carried out to determine the productivities/activities of lignin peroxidase, laccase, xylanase, endoglucanase and β-glucosidase in spent mushroom substrate. Further, the enzyme cocktails were concentrated for the hydrolysis of POME. Central composite design of response surface methodology was performed to examine the effects of enzyme loading, incubation time and pH on the reducing sugar yield. Productivities of the enzymes for xylanase, laccase, endoglucanase, lignin peroxidase and β-glucosidase were 2.3, 4.1, 14.6, 214.1, and 915.4 U g-1, respectively. A maximum of 3.75 g/lof reducing sugar was obtained under optimized conditions of 15 h incubation time with 10% enzyme loading (v/v) at a pH of 4.8, which was consistent with the predicted reducing sugar concentration (3.76 g/l). The biohydrogen cumulative volume (302.78 ml H2.L-1 POME) and 83.52% biohydrogen gas were recorded using batch fermentation which indicated that the enzymes of spent mushroom substrate can be utilized for hydrolysis of POME.

Characterization of Residual Lignins from Chemical Pulps of Spruce (Picea abies) and Beech (Fagus sylvatica) by KMnO4 Oxidation

  • Choi, J.-W.;Faix, O.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.31-39
    • /
    • 2003
  • The enzymatic isolation of residual lignins obtained from spruce and beech pulps (obtained by sulfite, kraft, ASAM and soda/AQ/MeOH pulping processes) and their characterization was described in previous publications. Here, the residual lignins have been submitted to potassium permanganate oxidation (KMnO4 degradation), and 9 aromatic carboxylic acids (3 of them are dimeric) were identified after methylation with diazomethane by GC/MS. The analytical challenge during qantification by the internal standard methods was the partly high protein content of the samples, which resulted in elevated anisic acid yields in the degradation mixture of sulfite residual lignins. The results are compared with the KMnO4 degradation of the corresponding MWLs and discussed in terms of S/G ratios and degrees of condensation. The latter was calculated as a quotient between the aromatic carboxylic acids derived from condensed and non-condensed lignin structures. Typical degradation patterns for the various processes have been observed. Among other parameter, the relative compositions between iso-hemipinic acid (which is for condensation in pos. 5 of the aromatic ring) and meta-hemipinic acid and 3,4,5-trimethoxyphthalic acid (both are for condensation in pos. 6 of the aromatic ring) was found to be process specific. Kraft and soda/AQ/MeOH residual lignins yielded higher amounts of iso-hemipinic acid. In contrast, the relative yields of meta-hemipinic acid and 3,4,5-trimethoxyphthalic acid (the latter in beech lignins) are higher in sulfite and particularly in ASAM residual lignin. In case of beech residual lignins the amount of acids originated from non-condensed syringyl type lignin units was surprisingly high. The condensation degree of residual lignins was shown to be generally higher than that of MWLs. This was especially true for the G units. ASAM residual lignin exhibited very high S/G ratios and degrees of polymerization. Causality between condensation degree and total yield of degradation products was demonstrated.

Effects of Light Quality of a Light-Emitting Diode (LED) on Carbohydrate, Protein, and Lipid Contents of Tetraselmis suecica and T. tetrathele (발광다이오드(LED) 파장에 따른 Tetraselmis suecica와 T. tetrathele의 탄수화물, 단백질 및 지질 함량에 미치는 영향)

  • Kyong Ha Han;Seok Jin Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • To establish a culture system with enhanced cellular nutrition, we investigated the effects of light quality (blue, 450 nm; yellow, 590 nm; and red, 630 nm) of a light-emitting diode (LED) on the biochemical composition of Tetraselmis suecica and T. tetrathele. The protein content of both species was higher (42-69%) than the content of other biochemical substances under all wavelengths. Carbohydrate, protein, and lipid contents were higher under the yellow wavelength, which showed a low growth rate, than those under other wavelengths. The contents of all biochemical substances were low under the red wavelength, which showed a high growth rate. These results indicated that protein synthesis occurs in response to decreased cell division rate, while lipid and carbohydrate synthesis occurs owing to altered chemical composition and enzymatic activity. Therefore, we suggested a two-phase LED culture system, which emitted red LED during the early-middle exponential phase and yellow LED during the late exponential and stationary phases, to increase the yield of useful biochemical substances of T. suecica and T. tetrathele.

Analysis on the substrate specificity and inhibition effect of Brassica oleracea glutathione S-Transferase (양배추 유래의 글루타티온 전달효소의 기질 특이성 및 저해 효과 분석)

  • Park, Hee-Joong;Lee, Hee-Jin;Kong, Kwang-Hoon
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.228-234
    • /
    • 2009
  • To gain further insight into herbicide detoxification of plant, we purified a glutathione S-transferase from Brassica oleracea (BoGST) and studied its substrate specificity towards several xenobiotic compounds. The BoGST was purified to electrophoretic homogeneity with approximately 10% activity yield by DEAE-Sephacel and GSHSepharose column chromatography. The molecular weight of the BoGST was determined to be approximately 23,000 by SDS-polyacrylamide gel electrophoresis and 48,000 by gel chromatography, indicating a homodimeric structure. The activity of the BoGST was significantly inhibited by S-hexyl-GSH and S-(2,4-dinitrophenyl)GSH. The substrate specificity of the BoGST displayed high activities towards CDNB, a general GST substrate and ethacrynic acid. It also exhibited GSH peroxidase activity toward cumene hydroperoxide.

Effects of Enzyme Treatment and Skin Contact Time on the Characteristics of Dae-hong Peach Wine (대홍복숭아 과실주의 품질 특성에 미치는 효소와 침용 시간의 영향)

  • Bora Lim;Dahye Kim;Ji-Eun Kang;Gui-Jeong Han;Seok-Tae Jeong;Chan-Woo Kim
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.6
    • /
    • pp.442-455
    • /
    • 2023
  • This study investigated the effects of pectinase treatment and skin contact time on the quality characteristics of Dae-hong peach wine. Wine was produced with variations in enzyme treatment and skin contact time (1 hour, 2 hours, 1 day, 2 days, and until the completion of fermentation). Enzyme treatment increased the production yield by 6%, as well as ethanol and redness levels, compared to the non-treated control. Volatile components were higher when the skin contact time was 2 hours or 1 day. Results were compared according to enzyme treatment and skin contact time and found to be influenced by methanol and 3-methyl-1-butanol. Enzyme treatment effectively enhanced yields and volatile compound contents. However, skin contact should be concluded a day before 1 day to ensure compliance with methanol legislative requirements. Therefore, our findings show that enzymatic treatment with shorter skin contact time preserves the distinctive characteristics of Dae-hong peaches and ensures the production of safe and flavorful wine.

Lactulose Production Using Immobilized Cells Including Thermostable Cellobiose 2-epimerase (열내성 Cellobiose 2-epimerase를 발현하는 대장균의 고정화담체를 이용한 락툴로오스의 생산방법)

  • Park, Ah-Reum;Koo, Bong-Seong;Kim, Jin-Sook;Kim, Eun-Jeong;Lee, Hyeon-Cheol
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.504-511
    • /
    • 2016
  • Lactulose, a synthetic disaccharide, has received increasing interest because of its role as a prebiotic that can increase the proliferation of Bifidobacterium and Lactobacillus spp. and enhance the absorption of calcium and magnesium. While the industrial production of lactulose is still mainly achieved by the chemical isomerization of lactose in alkaline media, this process has drawbacks including the need to remove catalysts and by-products, as well as high energy requirements. Recently, the use of cellobiose 2-epimerase (CE) has been considered an interesting alternative for industrial lactulose production. In this study, to develop a process for enzymatic lactulose production using CE, we screened improved mutant enzymes ($CS-H^RC^E$) from a library generated by an error-prone PCR technique. The thermostability of one mutant was enhanced, conferring stability up to $75^{\circ}C$, and its lactulose conversion yield was increased by 1.3-fold compared with that of wild-type CE. Using a recombinant Escherichia coli strain harboring a CS35 $H^RC^E$-expressing plasmid, we prepared cell beads immobilized on a Ca-alginate substrate and optimized their reaction conditions. In a batch reaction with 200 g/l lactose solution and the immobilized cell beads, lactose was converted into lactulose with a conversion yield of 43% in 2 h. In a repeated 38-plex batch reaction, the immobilized cell beads were relatively stable, and 80% of the original enzyme activity was retained after 4 cycles. In conclusion, we developed a reasonable method for lactulose production by immobilizing cells expressing thermostable CE. Further development is required to apply this approach at an industrial scale.

Ethanol Production by Synchronous Saccharification and Fermentation using Food Wastes (음식물 쓰레기 동시당화 발효에 의한 에탄올 생산)

  • Han, Hyo-Jung;Li, Hong-xian;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.474-478
    • /
    • 2006
  • For the economically feasible production of ethanol, utilization of SFW (saccharified food wastes) as substrate for synchronous saccharification and fermentation (SSF) process was developed in this study. When 200 g of food wastes and 40 mL of enzyme ($amylase activity,\;3.0\;U/m{\ell}$) were reacted, production rate of reducing sugar was $5.84\;g/{\ell}{\cdot}h$, and consumption rate was $-3.88\;g/{\ell}{\cdot}h\;at\;35^{\circ}C$ So suitable condition of SSF was concluded at temperature of $35^{\circ}C$. Also, optimal enzyme concentration of SSF was concluded in $2.0\;U/m{\ell}$, at this condition, the production rate of reducing sugar was $4.80\;g/{\ell}{\cdot}h$ At SSF process, when 50 g of food wastes was supplied in 12 h interval, $64\;g/{\ell}$ of ethanol and 0.45 g-ethanol/g-reducing sugar in yield were obtained in 120 h fermentation. Thus, the technology of high yield of ethanol production using food wastes was confirmed. And semi-continuos SSF system for cutting off cost of enzymatic saccharification was developed in this study.

Pretreatment of Rice Straw by Using Ammonia Recycled Percolation Process (암모니아 재순환 침출공정을 이용한 볏짚의 전처리)

  • Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • Because of high contents of cellulose (~37 wt%) and hemicellulose (~17%), rice straw seems to be a potential lignocellulosic biomass for production of bioethanol. In this study, Ammonia Recycled Percolation (ARP) pretreatment of rice straw was extensively investigated. In particular, the experimental study included the effects of temperature, reaction time and concentration of ammonia on compositions and enzymatic digestibility of the resulting solid residues; the ranges of pretreatment conditions were, in turn, $150{\sim}190^{\circ}C$, 10~90 min and 0~20 wt%. Through ARP pretreatment, the lignin content was reduced by as high as ~84% while 20~80% of the hemicellulose was also solubilized. The solid residue resulted from the pretreatment with 15 wt% aqueous ammonia solution at $170^{\circ}C$ for 90 mim showed as high as ~90% of digestibility with 15FPU/g of glucan enzyme loading. Supplement of xylanese to cellulase led to a notable enhancement of digestibility, indicating a discernable inhibitory role of hemicellulose. Simultaneous Saccharification and Fermentation (SSF) and Simultaneous Saccharification and Co-Fermentation (SSCF) were performed to obtain ethanol productions of 13.8 g/L (corresponding to 81% yield) and 15 g/L (corresponding to 89% yield), respectively.

Saccharification Characteristics of Extruded Corn Starch at Different Process Parameters (압출성형 공정변수에 따른 옥수수전분 팽화물의 당화특성)

  • Lee, Kyu-Chul;Kim, Yeon-Soo;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.155-161
    • /
    • 2011
  • The aim of this study was to determine the effects of different extrusion conditions on the saccharification characteristics( initial reaction velocity, reaction rate constant, yield) of extruded corn starch. Extruded corn starch-water slurries were mixed with alpha-amylase for the enzymatic saccharification. The saccharification yield of extruded corn starch was high at lower feed moisture content and higher barrel temperature. The solubility of extrudates increased with increase in the SME input which increased with increase in the feed moisture content. Starch hydrolysates having DE 63.8 was obtained after 2 hr reaction. The initial reaction velocity of the extrudate slurry with alpha-amylase was higher with decrease in the feed moisture content. The initial reaction velocity of extruded corn starch was the highest ($2.26{\times}10^{-3}mmol/mL{\cdot}min$) at 25% feed moisture content and $120^{\circ}C$ barrel temperature, 250 rpm screw speed. The pregelatinized starch was $1.83{\times}10^{-3}mmol/mL{\cdot}min$ as a control. Reaction rate constant was a similar trend to initial reaction velocity.