• Title/Summary/Keyword: Enzymatic process

Search Result 336, Processing Time 0.023 seconds

Correlation between pr1 and pr2 Gene Content and Virulence in Metarhizium anisopliae Strains

  • Rosas-Garcia, Ninfa M.;Avalos-de-Leon, Osvaldo;Villegas-Mendoza, Jesus M.;Mireles-Martinez, Maribel;Barboza-Corona, J.E.;Castaneda-Ramirez, J.C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1495-1502
    • /
    • 2014
  • Metarhizium anisopliae is a widely studied model to understand the virulence factors that participate in pathogenicity. Proteases such as subtilisin-like enzymes (Pr1) and trypsin-like enzymes (Pr2) are considered important factors for insect cuticle degradation. In four M. anisopliae strains (798, 6342, 6345, and 6347), the presence of pr1 and pr2 genes, as well as the enzymatic activity of these genes, was correlated with their virulence against two different insect pests. The 11 pr1 genes (A, B, C, D, E, F, G, H, I, J, and K) and pr2 gene were found in all strains. The activity of individual Pr1 and Pr2 proteases exhibited variation in time (24, 48, 72, and 96 h) and in the presence or absence of chitin as the inductor. The highest Pr1 enzymatic activity was shown by strain 798 at 48 h with chitin. The highest Pr2 enzymatic activity was exhibited by the 6342 and 6347 strains, both grown with chitin at 24 and 48 h, respectively. Highest mortality on S. exigua was caused by strain 6342 at 48 h, and strains 6342, 6345, and 6347 caused the highest mortality 7 days later. Mortality on Prosapia reached 30% without variation. The presence of subtilisin and trypsin genes and the activity of these proteases in M. anisopliae strains cannot be associated with the virulence against the two insect pests. Probably, subtilisin and trypsin enzyme production is not a vital factor for pathogenicity, but its contribution is important to the pathogenicity process.

Enzymatic Hydrolysis Characteristics of Pretreated Rice Straw By Aqueous Ammonia for Bioethanol Production (바이오에탄올 생산을 위한 암모니아수에 의해 전처리된 볏짚의 효소당화 특성)

  • Park, Yong Cheol;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.470-474
    • /
    • 2011
  • Rice straw is the main grain straw and is produced in large quantities every year in Korea. Pretreatment of lignocellulosic biomass using soaking process was carried out mild conditions at atmospheric pressure and temperature of $60^{\circ}C$. We found enzymatic hydrolysis condition of pretreated biomass. In case of a rice straw, compared with previous lignocellulosic biomass, we found that hydrolysis time was a shorter than others. Hydrolysis of SAA-treated rice straw has shown conversion rate was higher at $50^{\circ}C$. Hydrolysis was ended between 40~48 hour. Glucose conversion rate was higher when enzyme loading is 65 FPU/ml and 32 CbU/ml. When substrate concentration was 5%(w/v), it was that conversion rate was 83.8% after hydrolysis for 72 hr. In simultaneous saccharification and fermentation(SSF) experiment about SAA-treated rice straw, ethanol productive yield was highest from $40^{\circ}C$. The yield of that time was 33.05% from 48 hour.

Effects of Mixed Activators on Enzymatic Activation for Wool.polyester Blend Fabrics (양모.폴리에스터 혼방직물의 효소가공 시 활성제 복합사용의 효과)

  • Song, Hyun-Joo;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.9
    • /
    • pp.1461-1466
    • /
    • 2008
  • This study provides effects of mixed activators on enzymatic activation and determines optimum mixture ratio for enzymatic treatment. Wool 80% and polyester 20% blend fabric and papain from carica papaya are used in this experiment. L-cysteine and sodium sulfite are used as activators for papain treatment process. The treatment condition is pH 7.5, $70^{\circ}$, papain concentration 10%(o.w.f), 60 minutes. L-cysteine and sodium sulfite are added in enzyme solution with various concentrations($0{\sim}50mM$). The optimum treatment condition is determined by measuring weight loss, tensile strength, whiteness, water contact angle(WCA), dyeability and surface micrographs. The results are as follow; The optimum mixture ratio of activators is L-cysteine 2mM and sodium sulfite 10mM. Mixed activators assists in improving the activation of papain. WCA of papain treated fabrics is decreased since papain treatment with activator mixture makes wool polyester blend fabrics more hydrophilic. Dyeing property of papain-treated fabrics more improves by the treatment with mixed activators than with single activator. It means that this method can save time and lower cost. After papain treatment in the presence of mixed activator, the surface of fabrics is modified. The surface of wool fiber shows to be descaled and hydrolyzed, and that of polyester fiber shows to be cracked.

Development of Enzymatic Recombinase Amplification Assays for the Rapid Visual Detection of HPV16/18

  • Ning Ding;Wanwan Qi;Zihan Wu;Yaqin Zhang;Ruowei Xu;Qiannan Lin;Jin Zhu;Huilin Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1091-1100
    • /
    • 2023
  • Human papillomavirus (HPV) types 16 and 18 are the major causes of cervical lesions and are associated with 71% of cervical cancer cases globally. However, public health infrastructures to support cervical cancer screening may be unavailable to women in low-resource areas. Therefore, sensitive, convenient, and cost-efficient diagnostic methods are required for the detection of HPV16/18. Here, we designed two novel methods, real-time ERA and ERA-LFD, based on enzymatic recombinase amplification (ERA) for quick point-of-care identification of the HPV E6/E7 genes. The entire detection process could be completed within 25 min at a constant low temperature (35-43℃), and the results of the combined methods could be present as the amplification curves or the bands presented on dipsticks and directly interpreted with the naked eye. The ERA assays evaluated using standard plasmids carrying the E6/E7 genes and clinical samples exhibited excellent specificity, as no cross-reaction with other common HPV types was observed. The detection limits of our ERA assays were 100 and 101 copies/µl for HPV16 and 18 respectively, which were comparable to those of the real-time PCR assay. Assessment of the clinical performance of the ERA assays using 114 cervical tissue samples demonstrated that they are highly consistent with real-time PCR, the gold standard for HPV detection. This study demonstrated that ERA-based assays possess excellent sensitivity, specificity, and repeatability for HPV16 and HPV18 detection with great potential to become robust diagnostic tools in local hospitals and field studies.

Germination-Inhibitory Effect of Pulsatilla koreana N. Leaves; Protoanemonin as Active Principle

  • Bang, Seong-Cheol;Kim, Dong-Hwa;Ahn, Byung-Zun
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.89-92
    • /
    • 2005
  • The germination of Lactuca sativa seeds was significantly inhibited by the water extract of the fresh leaves of Pulsatilla koreana N. including abundant ranunculin. Germination inhibitory activity increased in a dose-dependantly. Protoanemonin, produced from ranunculin by enzymatic action during maceration process of leaves, was proved to be the active principle with inhibitory activity was above 90% at concentration of 1 mg/ml.

반응추출을 이용한 당 지방산 에스테르의 분리정제

  • Seo, Deok-Gi;Kim, Gwang-Il;Kim, U-Gyeong;Yu, In-Sang;Yun, Hyeon-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.504-507
    • /
    • 2002
  • A separation/purification process for enzymatic sugar ester production was investigated The crude reaction mixture contained sugar ester and unreacted fatty acid in acetone. The reaction mixture was mixed with KOH/phosphate buffer. Hexane was then added to enhance phase separation. Three phases formed: a lower aqueous phase containing nothing of interest, a polar organic solvent middle phase that contained mostly fatty acid soaps, and a hexane-rich upper phase that contained mostly sugar ester. Distribution coefficient of each component was measured.

  • PDF

Characteristics of White Water from Enzyme Deinking process for ONP at Low Alkalinity

  • Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.5
    • /
    • pp.44-49
    • /
    • 2009
  • Old newspaper was deinked using commercial cellulolytic enzymes and a surfactant complex at low alkalinity. The properties of the deinked pulp(DIP) were evaluated and the suspended solids content, cationic demand, turbidity, and chemical oxygen demand(COD) of the process water were measured. The results can summarized as follows, 1. The brightness and yield of the DIP were improved using enzymatic surfactant complex deinking. 2. The amount of foaming during deinking with the enzyme surfactant complex was higher than that with synthetic surfactant deinking. However, it was not sufficient to cause process problem. 3. The pH and turbidity of the white water from deinking with the enzyme surfactant complex were similar to those of the white water from surfactant deinking. 4. The suspended solids content, cationic demand, and COD of the white water from deinking with the enzyme surfactant complex were improved compared to those of the white water from surfactant deinking.

Modeling and Simulation of Simultaneous Saccharification and Fermentation of Paper Mill Sludge to Lactic Acid

  • LIN, JIAN-QIANG;LEE, SANG-MOK;KOO, YOON-MO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.40-47
    • /
    • 2005
  • Modeling and simulation for simultaneous saccharification and fermentation (SSF) process in bioconversion of paper mill sludge to lactic acid was carried out. The SSF process combined the enzymatic hydrolysis of paper mill sludge into glucose and the fermentation of glucose into lactic acid in one reactor. A mathematical modeling for cellulose hydrolysis was developed, based on the proposed mechanism of cellulase adsorption deactivation. Another model for simple lactic acid fermentation was also made. A whole mathematical model for SSF was developed by combining the above two models for cellulose hydrolysis and lactic acid fermentation. The characteristics of the SSF process were investigated using the mathematical model.

Modeling the Catalytic Activity and Kinetics of Lipase(Glycerol-Ester Hydrolase)

  • Demirer, Goksel N.;Duran, Metin;Tanner, Robert D.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.46-50
    • /
    • 1996
  • In order to design industrial scale reactors and proceises for multi-phase biocatalytic reactions, it is essential to understand the mechanisms by which such systems operate. To il-lustrate how such mechanisms can be modeled, the hydrolysis of the primary ester groups of triglycerides to produce fatty acids and monoglycerides by lipased (glycerol-ester hydrolase) catalysis has been selected as an example of multiphase biocatalysis. Lipase is specific in its behavior such that it can act only on the hydrolyzed (or emulsified) part of the substrate. This follows because the active center of the enzyme is catalytically active only when the substrate contacts it in its hydrolyzed form. In other words, lipase acts only when it can shuttleback and forth between the emulsion phase and the water phase, presumably within an interphase or boundary layer between these two phases. In industrial applications lipase is employed as a fat splitting enzyme to remove fat stains from fabrics, in making cheese, to flavor milk products, and to degrade fats in waste products. Effective use of lipase in these processes requires a fundamental understanding of its kinetic behavior and interactions with substrates under various environmental conditions. Therefore, this study focuses on modeling and simulating the enzymatic activity of the lipase as a step towards the basic understanding of multi-phase biocatalysis processes.

  • PDF

Ionic Liquid Pretreatment of Lignocellulosic Biomass

  • Han, Song-Yi;Park, Chan-Woo;Kwon, Gu-Joong;Kim, Nam-Hun;Kim, Jin-Chul;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.2
    • /
    • pp.69-77
    • /
    • 2020
  • Lignocellulosic biomass has recalcitrant characteristics against chemical and biological conversion due to its structural heterogeneity and complexity. The pretreatment process to overcome these recalcitrant properties is essential, especially for the biochemical conversion of lignocellulosic biomass. In recent years, pretreatment methods using ionic liquids (ILs) and deep eutectic solvents (DESs) as the green solvent has attracted great attention because of their advantages such as easy recovery, chemical stability, temperature stability, nonflammability, low vapor pressure, and wide liquids range. However, there are some limitations such as high viscosity, poor economical feasibility, etc. to be solved for practical use. This paper reviewed the research activities on the pretreatment effect of various ILs including DESs and their co-solvents with organic solvents on the enzymatic saccharification efficiency of lignocellulosic biomass and the nanocellulose preparation from the pretreated products.