• Title/Summary/Keyword: Enzymatic activity

Search Result 1,471, Processing Time 0.036 seconds

Effects of Dietary Tea Polyphenol on Tumor Growth Inhibition by Cisplatin in EMT6 Breast Tumor-bearing Mice (유방암 세포(EMT6) 이식 마우스에서 녹차폴리페놀 음용이 시스플라틴의 암 조직 성장 억제에 미치는 영향)

  • Lee, Byoung-Rai;Cho, Jung-Il;Park, Pyoung-Sim
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • The aim of this study is to evaluate the effects of green tea polyphenol (GTP) on anticancer treatment with cisplatin (CP), using both an in vitro cell culture model and an in vivo mouse model of established breast tumor. Mouse breast cancer cells (EMT6) were treated with or without GTP and CP followed by determination of the cell viability using an MTT assay. The relative cell viability of CP treated EMT6 cells was 96% at a 20 ${\mu}g/mL$ concentration of cisplatin; however, in combination with GTP (50 ${\mu}g/mL$), the cell viability decreased to 20% at the same concentration of CP (20 ${\mu}g/mL$). For the in vivo study, EMT6 cells were inoculated into Balb/c mice for the establishment of a tumor-bearing mice model. The tumor-bearing mice were treated with CP (5 mg/kg. i.p.) with or without dietary GTP (0.2% drinking water). Tumor growth was monitored by a measurement of tumor size using a digital caliper, and nephrotoxicity was determined by enzymatic and histological examinations. The levels of p53 and caspase-3 in tumor tissues were examined by a Western blot. In tumor-bearing mice treated with GTP plus CP, the increment of tumor volume showed a significant reduction, compared with CP or GTP alone. The levels of p53 and cleaved caspase-3 (caspase-3/p17) in tumor tissues of tumor-bearing mice were increased by CP and GTP compared to CP alone. In CP treated tumor-bearing mice, ${\gamma}$-glutamyltranspeptidase (GGT) and alkaline phosphatase (AP) activities were decreased, and marked tubular necrosis and dilatation were observed in the kidney. CP-induced enzymatic and histopathological changes in the kidney of tumor-bearing mice were reduced by combinations of GTP with CP. The results of these experiments demonstrated that dietary GTP has a potentiating effect on CP anti-tumor activity and a protective effect against CP-induced renal dysfunction. Therefore, GTP may be used as a modulator in anticancer treatment with CP.

Protective Effects of Enzymatic Oyster Hydrolysate on Acetaminophen-induced HepG-2 Cell Damage (아세트아미노펜 유도 HepG-2 세포주 손상에 대한 굴 효소 가수분해물의 보호 효과)

  • Park, Si-Hyang;Moon, Sung-Sil;Xie, Cheng-Liang;Choung, Se-Young;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1166-1173
    • /
    • 2014
  • This study investigated the detoxification effects of enzymatic hydrolysate from oyster on acetaminophen-induced toxicity using HepG-2 cells. Oyster hydrolysate was made with 1% Protamex and 1% Neutrase after treatment with transglutaminase (TGPN) or without (PN). Two types of oyster hydrolysate were added to human-derived HepG-2 hepatocytes damaged by acetaminophen, after which the survival rate of HepG-2 cell was measured. In addition, glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activities in the culture media were evaluated. The survival rates of HepG-2 cells were $136.2{\pm}1.4%$ at $100{\mu}g/mL$ of TGPN and $179.6{\pm}3.8%$ at $200{\mu}g/mL$ of TGPN. These cell survival rates were higher compared to that of the negative control group ($60.7{\pm}3.2%$) treated only with acetaminophen. GOT activity was $38.3{\pm}0.2$ Karmen/mL in the negative control group, whereas it was $19.9{\pm}0.5$ for TGPN ($200{\mu}g/mL$) and $22.0{\pm}2.4$ Karmen/mL for PN ($200{\mu}g/mL$). GOT and GTP activities were shown to be dependent on TGPN concentration, and significant reduction in activities could be conformed. The detoxification efficacy of TGPN was higher compared to that of PN. These results suggest that oyster hydrolysate has potential as a healthy food or pro-drug for liver protection.

Studies on the Hydrolysis of Holocellulose with Trichoderma viride Cellulase - (I) Effect of the treated substrate - (Cellulase에 의(依)한 목재당화(木材糖化)에 관(關)한 연구(硏究) - (I) 기질(基質) 처리(處理)의 효과(効果) -)

  • Cheong, Tae-Seong;Min, Du-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.38 no.1
    • /
    • pp.13-18
    • /
    • 1978
  • In this study, enzymatic hydrolysis of the holocellulose from Alnus hirsuta (Spach) Rupr. (8-14 yr's) was investigated using crude cellulase preparations of Trichoderma viride Pers. ex. Fr. SANK 16374. And conducted on the optimum condition of the treated substrate for saccharification. A strain of Trichoderma viride Pers. ex. Fr. SANK 16374 was found to be highly efficient for the cellulase productivity, especially in the submerged culture process. The culture medium used in this experiment was prepared from an extract of wheat bran consisting also of $KH_2PO_410$, $(NH_4)_2$ $SO_4$ 3, $NaNO_3$ 3, and $MgSO_4$ $7H_2O$ 0.5g/l. Cellulose powder (Toyo filter paper, 60 mesh) was found to be an importent factar for inducing the cellulase formation. And the cellulase produced in the culture fluid was salted out quantitatively by the use of ammonium sulfate (Fig. 1) Reducing sugar was determined by the Dinitrosalicylic acid (DNS) method, using reagents prepared according to the method of Sumner (1925). The results obtained were summerized as follows; 1. The method of delignification were treated by the Peracetic acid (PA) method, according to the method of Toyama (1970). The yield of holocellulose were decreased in accordance with increasing concentration of Peracetic acid solution; delignification of Alnus hirsuta Rupr. with 20% Peracetic acid was satisfied for 48 hours and 40%~60% peracetic acid was satisfied for 24 hrs: 2. The substrate (holocellulose) was changed easely into fine powder with enzymatic hydrolysis and cellulase exhibits optimum activity on the reducing sugar formation from substrate at the range of 60-100 mesh. 3. The reducing sugar formation increased in accordance with increasing dry temperature on holocellulose substrate was found to be $190{\pm}5^{\circ}C$. 4. The optimal heat treated time of holocellulose substrate was found to be 45 min. for the reducing sugar formation showed the best products. The reducing sugar formation did not show statisticaly significent diflerences at 5% levels by heat treated time for 45 min. and 60 min.

  • PDF

Preparation and Characterization of Enzymatic Oyster Hydrolysates-added Yogurt (굴 효소 가수분해물 첨가 요구르트의 제조 및 특성)

  • Chung, In-Kwon;Kim, Hye-Suk;Kang, Kyung-Tae;Choi, Jong-Duck;Heu, Min-Soo;Kim, Jin-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.926-934
    • /
    • 2006
  • The base for preparing oyster hydrolysate-added yogurt was consisted of whole milk (1,000 mL), skim milk (44.05 to 42.05 g), enzymatic oyster hydrolysates powder (OHP, 0 to 2.0 g) and pectin. The yogurt base was fermented with 7 kinds of starter cultures (3% based on yogurt volume), such as Lactobacillus acidophilus, lactobacillus bulgaricus, lactobacillus casei, Lactobacillus fermentum, Lactobacillus pentosus, Streptcoccus thermophilus and the mixed starters (L. bulgaricus and S. thermophilus) at optimal temperature. Processing condition and quality characteristics of the yogurt were evaluated by analyzing pH, titratable acidity, viscosity, viable cell count, functional properties and sensory evaluation. The results suggested that the optimal conditions for preparing the good quality yogurt revealed the mixed starters (L. bulgaricus and S. thermophilus) for starter culture, 1.0 g of 3 kDa hydrolysate for amount, and 5.5 hrs for fermentation time. The good quality yogurt showed 4.31 for pH, 1.07% for titratable acidity, 469 cps for viscosity and $4.9{\times}10^8\;CFU/mL$ for viable cell count. The hydrolysate-added yogurt was 2 times higher in ACE inhibitory and antioxidant activities than commercial yogurt, and kept good quality during storage of 15 days at $5^{\circ}C$.

Physico-chemical, Nutritional, and Enzymatic Characteristics of Shiitake Spent Mushroom Substrate (SMS) (표고버섯 수확 후 배지의 이화학적, 영양적, 효소적 특성)

  • Sung, Hwa-Jung;Pyo, Su-Jin;Kim, Jong-Sik;Park, Jong-Yi;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1339-1346
    • /
    • 2018
  • In Korea, edible mushrooms are produced largely on commercial artificial media, so the annual production of spent mushroom substrate (SMS), as a by-product of the mushroom industry, is estimated at over 200 million tons. This SMS is assumed to contain abundant fungal mycelia and pre-fruiting bodies, as well as various nutritive and bioactive compounds that are presently discarded. This study examined the physico-chemical, nutritional, and enzymatic characteristics of uninoculated sterilized medium (USM) and SMS of shiitake mushrooms with the aim of developing a high-value added product from SMS. The contents of crude protein, crude lipid, and ash were higher after the third SMS harvest ($SMS-A-3^{rd}$) than in USM or $SMS-A-1^{st}$. The contents of Ca, Mg, and P in $SMS-A-3^{rd}$ were 2.95, 2.35, and 2.1-fold higher compared than in USM. No As or Cd was detected in USM or SMS. The pH, Brix, and acidity were 4.6, 20.0, and 1.4, respectively in $SMS-A-3^{rd}$, but 5.6, 6.0, and 0.0, respectively, in USM. These results suggest a highly active production of soluble components and organic acids in $SMS-A-3^{rd}$. The distinct color differences noted for USM, $SMS-A-1^{st}$, and $SMS-A-3^{rd}$ could be used as a mycelial growth indicator. Enzyme activity assays using the APIZYM system showed that SMS is a potent source of hydrolysis-related enzymes, especially esterase (C4) and ${\beta}$-glucuronidase. Our results suggested that the SMS of shiitake has a high potential for use in environmental, agricultural, and stock-breeding industries, for example, as active ingredients for sewage treatment, waste-polymer degradation, and feed additives.

Investigation on Inhibitory Effect of ErmSF N-Terminal End Region Peptide on ErmSF Methyltansferase Activity In Vivo Through Development of Co-Expression System of Two Different Proteins in One Cell (서로 다른 두 단백질의 세포 내 동시 발현 체계의 개발을 통한 ErmSF에서 특이적으로 발견되는 N-Terminal End Region (NTER)을 포함하는 펩타이드의 생체내에서의 ErmSF 활성 억제 효과 검색)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.200-208
    • /
    • 2011
  • Most problematic antibiotic resistance mechanism for MLS (macrolide-lincosamide-streptogramn B) antibiotics encountered in clinical practice is mono- or dimethylation of specific adenine residue at 2058 (E. coli coordinate) of 23S rRNA which is performed by Erm (erythromycin ribosome resistance) protein through which bacterial ribosomes reduce the affinity to the antibiotics and become resistant to them. ErmSF is one of the four gene products produced by Streptomyces fradiae to be resistant to its own antibiotic, tylosin. Unlike other Erm proteins, ErmSF harbors idiosyncratic long N-terminal end region (NTER) 25% of which is comprised of arginine well known to interact with RNA. Furthermore, NTER was found to be important because when it was truncated, most of the enzyme activity was lost. Based on these facts, capability of NTER peptide to inhibit the enzymatic activity of ErmSF was sought. For this, expression system for two different proteins to be expressed in one cell was developed. In this system, two plasmids, pET23b and pACYC184 have unique replication origins to be compatible with each other in a cell. And expression system harboring promoter, ribosome binding site and transcription termination signal is identical but disparate amount of protein could be expressed according to the copy number of each vector, 15 for pACYC and 40 for pET23b. Expression of NTER peptide in pET23b together with ErmSF in pACYC 184 in E. coli successfully gave more amounts of NTER than ErmSF but no inhibitory effects were observed suggesting that there should be dynamicity in interaction between ErmSF and rRNA rather than simple and fixed binding to each other in methylation of 23S rRNA by ErmSF.

Sodium Salicylate(NaSaL) Induces Apoptosis of NCI-H1299 Lung Carcinoma Cells via Activation Caspase-3 Protease (NCI-H1299 폐암 세포주에서 Caspase-3 Protease 활성을 통한 Sodium Salicylate(NaSaL)의 세포고사)

  • Shim, Hyeok;Yang, Sei-Hoon;Bak, Sang-Myeon;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.5
    • /
    • pp.485-496
    • /
    • 2002
  • Background : Nonsteroidal anti-inflammatory drugs (NSAIDs) are useful in the chemoprevention of colon cancers. Continuous NSAID use results in a 40% to 50% reduction in the relative risk of colorectal cancer. The precise mechanism by which NSAIDs prevent and/or cause the regression of colorectal tumors is not known. Some investigators have reported that certain NSAIDs induce apoptosis and alter the expression of the cell cycle regulatory genes in some carcinoma cells when administered at a relatively high concentration. However, the possibility of NSAIDs application as chemopreventive agents in lung cancers remains to be elucidated. To address this question, the human lung cancer cell line NCI-H1299 was used to investigate whether or not NSAIDs might induce the apoptotic death of NCI-H1299 cells. Methods : A viability test was carried out using a MTT assay. Apoptosis was measured by flow cytometric analysis and unclear staining(DAPI). The talytic activity of the caspase family was measured by the fluirigenic cleavage of biosubstrates. To define the mechanical basis of apoptosis, western blot was performed to analyze the expression of the death substrates(PARP and ICAD). Results : NaSaL significantly decreased the viability of the NCI-H1299 cells, which was revealed as apoptosis characterized by an increase in the $subG_0/G_1$ population and unclear fragmentation. The catalytic activity of caspase-3 protease began to increase after 24 Hr and reached a peak 30 Hr after treatment with 10 mM NaSaL. In contrast, caspase-6, 8, and 9 proteases did not have a significantly altered enzymatic activity. Consistent with activation of caspase-3 protease, NaSaL induced the cleavage of the protease biosubstrate. Conclusion : NaSaL induces the apoptotic death of NCI-H1299 human lung cancer cells via the activation of caspase-3 protease.

Studies on the Antibacterial Activity of Enzymatic Hydrolyzates of Lactoferrin Derived from Bovine Colostrum (유우 Lactoferrin 효소가수분해물 항균 활성에 관한 연구)

  • Han, Su Yeon;Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.1
    • /
    • pp.52-67
    • /
    • 1998
  • The investigative research on the mammalian milk purely consisted of the physiological quality of lactoferrin was conducted to reveal the antimicrobial ativity of specifically functional foods with antibiotic characteristics as a basic data in food manufacturing. Bovine lactoferrin were isolated from raw milk samples, and was digested with pepsin, trypsin and chymotrypsin. It was necessary then to separate and purify lactoferrin from bovine raw milk, and in order to analyze the antimicrobial activity of the enzyme-treated bovine lactoferrin in their required quantitative fraction. Afterwards Escherichia coli and Staphylococcus aureus was incubated in it. It was that investigated to enzyme-treated fractions molecular weight and the peptide fragment with antimicrobial effect. 1. The purity of enzyme-treated bovine lactoferrin(BLF) was tested by SDS-PAGE. As a results of 12% SDS-PAGE assay, pepsin-treated LF did not exhibited band until if reaches 14 KDa, while trypsin and chymotrypsin treated LF, known to contain the non-digestive lactoferrin exhibited band at a molecular weight of 33 KDa. 2. Bovine lactoferrin was sucessfully purified through the use of Sephadex G-50 Column. In order to assay LF through the Sephadex G-50 column chromatography, the digestive bovine lactoferrin (BLFs) was eluted with a linear gradient of 0.05% Tris-HCl. When the gel-filtration analysis, pepsin, trypsin and chymotrypsin treatments of BLF fragments was showed 2, 3, and 2 peak, respectively. The results of the HPLC analysis confirmed that had a non-digestive lactoferrin receptor, and trypsin and chymotrypsin treated BLFs has an antimicrobial effect. 3. To measure the strength of the antimicrobial effect of enzyme treated lactoferrin it was compared to the antimicrobial activity taking place at the incubated Escherichia coli and Staphylococcus aureus. This might explain the resistance of the microorganisms for peptide fragment. The pepsin-treated of bovine lactoferrin was markedly reduced by incubation of the cells. Trypsin-treated of BLF was similar to chymotrypsin-treated of BLF. However, trypsin and chymotrypsin treatments of BLFs were showed the antimicrobial effect until eight hours incubation for native bovine lactoferrin. Therefore the enzyme-treated lactoferrin have an antimicrobial effect even non-digestive lactoferrin. 4. The digestive bovine lactoferrin fragments assay was carried out by the use of Sephadex G-50 column chromatography and SDS-PAGE. The pepsin and chymotrypsin-treated fragments has a low molecular weight and trypsin-treated lactoferrin was only showed a band. It was described that characteristics of digestive protein. It appeared that there may be a relation between virulence and resistance to enzyme-treated BLF.

  • PDF

Enzymatic Desugarization of Egg White for Drying with Glucose Oxidase (Glucose Oxidase에 의(依)한 건조용(乾燥用) 난백(卵白)의 효소적(酵素的) 탈당(脫糖))

  • Song, Kwang Taek;Oh, Hong Rock;Kwon, Soon Ki;Lee, Bong Duck
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.2
    • /
    • pp.223-232
    • /
    • 1984
  • The influences of some factors involved in removing glucose from egg white by the glucose oxidase system be fore drying were investigated. And the properties between foams prepared from raw and enzyme-treat ed egg white was compared. The results obtained we re summarized as follows; 1. The dianisidine method was found to be suitable for the measurement of egg white glucose in the range up to 100ug/ml. 2. The optimal pH of glucose oxidase activity on glucose was found to be a bout 5.0, and thats activity was most stable in the pH range of about 4.0~5.0 when that enzyme was treat ed for 30 minute at $50^{\circ}C$. 3. The optimal temperature for glucose oxidase reaction on glucose was found to be about $20^{\circ}C$, and that enzyme activity was s table up to $50^{\circ}C$. 4. The removing rate of glucose from egg white with glucose oxidase was influenced by the enzyme concentration, pH and oxygen addition, and the react ion time of the desugarization was about 10 hour sunder the conditions of 0.5% hydrogen peroxide, pH 7.0 and $26^{\circ}C$. 5. All of the each egg white treated with glucose oxidase, glucose oxidase+pancreatin, glucose oxidase+trypsin showed highly foaming ability than that of natural egg white(control), but thats foam stability, on the contrary, was reversed.

  • PDF

Continuous Production of Fish Skin Gelatin Hydrolysate Using a Two-Stage Membrane Ractor (2단계 막반응기를 이용한 어피젤라틴 가수분해물의 연속적 생산)

  • Kim, Se-Kwon;Byun, Hee-Guk;Jeon, You-Jin;Yang, Hyun-Phil;Jou, Duk-Je
    • Applied Biological Chemistry
    • /
    • v.37 no.2
    • /
    • pp.130-141
    • /
    • 1994
  • A continuous two-stage membrane (1st-SCMR, MWCO 10,000; 2nd-SCMR, MWCO 5,000) reactor was developed and optimized for the production of fish skin gelatin hydrolysate with different molecular size distribution profiles using trypsin and pronase E. The optimum operating conditions in the 1st-step membrane reactor using trypsin were: temperature, $55^{\circ}C$ ; pH 9.0; enzyme concentration, 0.1 mg/ml; flux, 6.14 ml/min; reaction volume, 600 ml; and the ratio of substrate to trypsin, 100 (w/w). After operating for 1 hr under the above conditions, 79% of total amount of initial gelatin was hydrolysed. In the 2nd-step using pronase E under optimum operating conditions[temperature, $50^{\circ}C$ ; pH 8.0; enzyme concentration, 0.3 mg/ml; flux, 6.14 ml/min; reaction volume, 600 ml; and the ratio of substrate to pronase E, 33 (w/w)], the 1st-step hydrolysate was hydrolysed above 80%. Total enzyme leakages in the 1st-step and 2nd-step membrane reactors were about 11.5% at $55^{\circ}C$ for 5hrs and 9.0% at $50^{\circ}C$ for 4 hrs, respectively. However, there was no apparent correlation between enzyme leakage and substrate hydrolysis. The membrane has a significant effect on activity lose of trypsin and pronase E activity for 1 hr of the membrane reactors operation. The loss of initial activity of enzymes were 34% and 18% in the 1st-step and 2nd-step membrane reactor, whereas were 23% and 10% after operating time 3 hr in the 1st-step and 2nd-step membrane reactor lacking the membrane, respectively. The productivities of 1st-step and 2nd-step membrane reactor for 8 times of volume replacement were 334 mg and 250 mg per mg enzyme, respectively.

  • PDF