• Title/Summary/Keyword: Environmentally friendly Materials

Search Result 399, Processing Time 0.024 seconds

The Germination, Cover View and Root Potential Properties of Plants within CSG Planting Block by Mixture Seeding (혼합파종에 따른 CSG 식생 블록 내 식물의 발아, 피복도 및 근계력 특성)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.63-71
    • /
    • 2010
  • This study was performed to evaluate the planting properties and root potential of planting block with mixing seeding of herbaceous plants and cool-season grasses in CSG blocks manufactured by cemented sand and materials (CSG) in order to develop environmentally friendly CSG block applied revegetation. Five types of CSG mix designs with cement contents were determined, and the mechanical properties of CSG materials were studied experimentally. To analyze growth properties of plants within CSG block, germination ratio, visual cover, plant height and root potential were measured in four weeks and eight weeks after seeding. The germination regardless mixture seeding of plants and CSG mixproportions started within 4 ~ 7 days after seeding and the germination ratio were in the range of 60 ~ 65 %. The visual cover of kinds of plants evaluated by visual rating system were in the range of 6 ~ 8 in case of seeding the species of cool-season grasses and were in the range of 4 ~ 6 in case of seeding the species of herbaceous plants in four weeks after seeding. The root potential of CSG block with the species of cool-season grasses and herbaceous plants were in the range of $5.7{\times}10^{-3}{\sim}7.7{\times}10^{-3}$ MPa and $2.3{\times}10^{-3}{\sim}6.7{\times}10^{-3}$ MPa in eight weeks after seeding, respectively.

Evaluate of Electrochemical Characteristics in Electrolyzed Reduced Water

  • Park, Sung-Ho;Yun, Su-Jin;Kim, Jeong-Sik;Shin, Hyun-Su;Park, Soo-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.85-90
    • /
    • 2011
  • Active oxygen species or free radicals are considered to cause extensive oxidative damage to biological macromolecules, which brings about a variety of diseases as well as aging. Electrolyzed reduced water(ERW) has been regarded as a ideal antioxidative agent in recent years. ERW is produced by passing a diluted salt solution through an electrolytic cell, within which the anode and cathode are separated by membrane. It can be produced reactive materials in ERW near the cathode during the electrolysis of water. ERW have the following advantages over other traditional cleaning agents: effective antioxidative agent, easy preparation, inexpensive, and environmentally friendly. The main advantage of ERW is its safety and antioxidative effect. ERW with strong reducing potential can be used to remove dirt and grease from items such as cutting boards and other kitchen utensils. The primary aim of this study is the activation mechanism of oxidation reduction potentials, ion conductivity, pH, and electrochemical properties with reactive materials in ERW.

Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

  • Lee, Minjae;Kim, Bo-Hyun;Lee, Yuna;Kim, Beom-Tae;Park, Joon B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1979-1984
    • /
    • 2014
  • We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in $H_2$ and $O_2$ gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance.

Development of Microstructure and Texture of AZ61 and AZ80 Magnesium Alloys by Hot Rolling (열간압연에 따른 AZ61 및 AZ80 마그네슘 합금의 미세조직 및 집합조직 발달에 대한 연구)

  • Lee, Ji Ho;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.49-56
    • /
    • 2020
  • Magnesium alloy is a metal with high specific strength and light weight, and is attracting attention as a next generation metal for environmentally friendly automobiles and transportation equipment. However, magnesium alloys have a problem of degrading formability due to the basal texture developed during processing, and their application is limited. Although active researches on the control of textures have been conducted in order to minimize this problem, there is a lack of research on the formation of microstructures and textures according to elemental differences. In this study, AZ61 and AZ80 magnesium alloys were selected to investigate the effects of aluminum addition on the microstructure development of magnesium alloys. This research has proven that the increase of the rolling rate results in the decrease of the average grain size of the two alloys, the increase of the hardness, and the increase of the fraction of twins. As shown on this research below, the basal texture developed strongly as the rolling ratio increased. On the other hand, this research also has proven that the two alloys exhibited different texture strength and distribution tendencies, which could be due to the effects of aluminum addition on work hardening, grain size, and twin behavior.

Growth and characterization of $Cu_2ZnSnSe_4$ (CZTSe) thin films by sputtering of binary selenides and selenization

  • Munir, Rahim;Jung, Gwang-Sun;Ahn, Byung-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • Thin film solar cells are growing up in the market due to their high efficiency and low cost. Especially CdTe and $CuInGaSe_2$ based solar cells are leading the other cells, but due to the limited percentage of the elements present in our earth's crust like Tellurium, Indium and Gallium, the price of the solar cells will increase rapidly. Copper Zinc Tin Sulfide (CZTS) and Copper Zinc Tin Selenide (CZTSe) semiconductor (having a kesterite crystal structure) are getting attention for its solar cell application as the absorber layer. CZTS and CZTSe have almost the same crystal structure with more environmentally friendly elements. Various authors have reported growth and characterization of CZTSe films and solar cells with efficiencies about 3.2% to 8.9%. In this study, a novel method to prepare CZTSe has been proposed based on selenization of stacked Copper Selenide ($Cu_2Se$), Tin Selenide ($SnSe_2$) and Zinc Selenide (Zinc Selenide) in six possible stacking combinations. Depositions were carried out through RF magnetron sputtering. Selenization of all the samples was performed in Close Space Sublimation (CSS) in vacuum at different temperatures for three minutes. Characterization of each sample has been performed in Field Emission SEM, XRD, Raman spectroscopy, EDS and Auger. In this study, the properties and results of $Cu_2ZnSnSe_4$ thin films grown by selenization will be presented.

  • PDF

Effects of Particle Measuring Conditions on Diesel Nanoparticles Distribution (입자측정조건이 디젤 나노입자의 입경분포에 미치는 영향)

  • Lee, Jin-Wook;Kim, Hong-Suk;Jeong, Young-Il
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.653-660
    • /
    • 2006
  • Due to the stronger exhaust emission regulations and the introduction of advanced technology in Diesel engine, the specific Diesel particulate matters have decreased by about one order of magnitude since the 1980's. In recent years, particle number emissions rather than particulate mass emissions have become the subject of controversial discussions. Recent results from health studies imply that it is possible that particulate mass does not properly correlated with the variety of health effects attributed to Diesel exhaust. Concern is instead now focusing on nano-sized particles. This study has been performed for the better understanding about the Diesel nano-particle measurement and size distribution characteristics in the exhaust system of a turbo charged Diesel engine. A scanning mobility particle sizer(SMPS) system was applied to measure the particle number and size concentration of Diesel exhaust particles. As the experimental results, the number concentrations in the particle size (Dp<200 nm) were very sensitive to dilution conditions. Specially the changes in nano-particle number concentrations(Dp<50 nm) increased along the downstream of exhaust flow. Also we found the dilution conditions were influencing the condensation of SOF and $H_2O$ during dilution and cooling of hot exhaust.

Fibril Removal from Lyocell by Enzymatic Treatment -Compare NaOH Pre-treatment with Treating Enzyme (전처리에 의한 리오셀의 피브릴레이션 변화 -NaOH와 효소 처리 중심으로-)

  • Park, Ji-Yang;Kim, Ju-Hea;Jeon, Dong-Won;Park, Young-Hwan
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.8
    • /
    • pp.1323-1332
    • /
    • 2006
  • Lyocell is a regenerated cellulose fiber manufactured by an environmentally-friendly process. Since the fiber has more crystalline region compared to rayon, lyocell shows higher wet-strength than rayon. Although fibril generation of lyocell is lower than that of rayon because of the reason, the fibril generated during the wet process deteriorates the smooth look and soft touch of the fabric. The efficient way to remove the fibril yet retain the strength property was investigated in this work. In order to scour and remove the fibril from the fabric, cellulase enzymes were introduced and the traditional scouring was carried to be compared. Weight loss, dye-ability, and strength of treated fabric were measured after the treatments. Scanning electron microscopy was used to observe the surface of the fiber. Among the cellulases used in this work, Denimax 992L showed the best results for removal of fibril with low weight loss and tensile strength loss. The optimal conditions for the enzymatic treatment could be chosen depending on a characteristic for final purpose of the lyocell product.

Life-cycle Environmental Impact Assessment of High-rise Apartments

  • Kim, Samuel;Kim, Se-Hwan;Lee, Sung
    • Architectural research
    • /
    • v.3 no.1
    • /
    • pp.29-36
    • /
    • 2001
  • Concern about global environment has been increasing in recent years. Efforts to minimize the environmental impact to the globe as well as human beings have increased, especially in the late twentieth century. The study researches one of the solutions for the environmentally friendly building construction, which can contribute to sustaining the world environment. Assessment and proposals are made for high-rise apartments, one of the most popular construction types nowadays in Korea. Since the volume of high-rise apartment construction is so great, a small improvement in each building will make a great contribution. Assessments are made over the life-span of apartment buildings. A tool named EIAHA (Environmental Impact Assessment for High-rise Apartment) has been made through references from western examples, mainly in the UK. The components of EIAHA include passive design strategies, building materials, energy consumption during building operation and management/maintenance. Although the issues are on a global scale, solutions are sought on regional scale. Korean high-rise apartments are assessed with the tool and suggestions for sustainable development are made mainly for improvement of embodied energy of building materials and the life of buildings.

  • PDF

Characteristics of shear strength of coarse-grained materials using large triaxial test equipment (대형삼축시험 장비를 이용한 조립재료의 전단강도 특성)

  • Jin, Guang-Ri;Snin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1017-1024
    • /
    • 2009
  • In the past few decades, the rockfill embankment dam, which has superior workability and economy, has become a major trend. In Korea, most of the embankment dams are rockfill dams, but recently, in response to the demand for sustainable development and environmentally-friendly water resource development, the sand and gravel in streams has become a major construction material for dams, rather than the non-economic rockfill, and its application examples have also increased. In this study, a large triaxial test was performed, with construction samples of different maximum sizes, in parallel with the grading method at the 'B Dam' construction site in Korea, and the effects of the different maximum sizes on the strain of the dam construction material and on the shear strength characteristics were analyzed to provide the basic data for determining the strength characteristics of the coarse-grained materials by the maximum size.

  • PDF

Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • This review deals with one of the surface modification techniques, chemical conversion coating and particularly cerium-based conversion coatings (CeCC) as a promising substitute for chromium and phosphate conversion coating on magnesium and its alloys. The CeCCs are commonly considered environmentally friendly. The effects of surface preparation, coating thickness, bath composition, and e-paint on the corrosion behavior of CeCCs have been studied on the AZ31 magnesium alloy. This review also correlates the coating microstructural, morphological, and chemical characteristics with the processing parameters and corrosion protection. Results showed that the as-deposited coating system consists of a three layer structure (1) a nanocrystalline MgO transition layer in contact with the Mg substrate, (2) a nanocrystalline CeCC layer, and (3) an outer amorphous CeCC layer. The nanocrystalline CeCC layer thickness is a function of immersion time and cerium salt used. The overall corrosion protection was crucially dependent on the presence of coating defects. The corrosion resistance of AZ31 magnesium alloy was better for thinner CeCCs, which can be explained by the presence of fewer and smaller cracks. On the other hand, maximum corrosion protection was achieved when AZ31 magnesium samples with thin CeCCs are e-painted. The e-paint layer further restricts and hinders the movement of chloride and other aggressive ions present in the environment from reaching the magnesium surface.