• Title/Summary/Keyword: Environmentally friendly

Search Result 1,694, Processing Time 0.032 seconds

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

Photocatalytic Oxidation of Arsenite Using Goethite and UV LED (침철석과 자외선 LED를 이용한 아비산염의 광촉매 산화)

  • Jeon, Ji-Hun;Kim, Seong-Hee;Lee, Sang-Woo;Kim, Soon-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Arsenic (As) has been considered as the most toxic one among various hazardous materials and As contamination can be caused naturally and anthropogenically. Major forms of arsenic in groundwater are arsenite [(As(III)] and/or arsenate [(As(V)], depending on redox condition: arsenite and arsenate are predominant in reduced and oxidized environments, respectively. Because arsenite is much more toxic and mobile than arsenate, there have been a number of studies on the reduction of its toxicity through oxidation of As(III) to As(V). This study was initiated to develop photocatalytic oxidation process for treatment of groundwater contaminated with arsenite. The performance of two types of light sources (UV lamp and UV LED) was compared and the feasibility of goethite as a photocatalyst was evaluated. The highest removal efficiency of the process was achieved at a goethite dose of 0.05 g/L. Based on the comparison of oxidation efficiencies of arsenite between two light sources, the apparent performance of UV LED was inferior to that of UV lamp. However, when the results were appraised on the basis of their emitting UV irradiation, the higher performance was achieved by UV LED than by UV lamp. This study demonstrates that environmentally friendly process of goethite-catalytic photo-oxidation without any addition of foreign catalyst is feasible for the reduction of arsenite in groundwater containing naturally-occurring goethite. In addition, this study confirms that UV LED can be used in the photo-oxidation of arsenite as an alternative light source of UV lamp to remedy the drawbacks of UV lamp, such as long stabilization time, high electrical power consumption, short lifespan, and high heat output requiring large cooling facilities.

Biological Control of Diamondback Moth, Plutella xylostella with Korean Isolates of Entomopathogenic Nematodes (Steinernematid and Heterorhabditid) in Greenhouse (곤충병원성 선충(Steinernematid와 Heterorhabditid)을 이용한 시설재배지 배추좀나방(Plutella xylostella)의 생물적 방제)

  • Kim, Hyeong-Hwan;Cho, Sung-Rae;Lee, Dong-Woon;Jeon, Heung-Yong;Park, Chung-Gyoo;Choo, Ho-Yul
    • Korean journal of applied entomology
    • /
    • v.45 no.2 s.143
    • /
    • pp.201-209
    • /
    • 2006
  • Five strains of Korean entomopathogenic nematodes (EPN), steinernematids and heterorhabditids were evaluated and tried in laboratory, pot, and vegetable greenhouses for environmentally friendly control of diamondback moth (DBM), Plutella xyiostella, from 2002 to 2005. LC$_{50}$ values of five EPN strains against DBM were different depending on nematode strain and DBM instar. LC$_{50}$ value of Steinernema carpocapsae GSN1 (GSN1) was the lowest representing 2.6$\sim$3.9 infective juveniles (Ijs, 3rd stage) to 2nd to 4th instars of DBM. Pathogenicity of five effective strains against DBM was different depending on nematode strain, concentration, application times, and vegetable in pot. The most effective nematode was GSN1. Steinernema spp. was more effective than Heterorhabditis spp. against DBM. Two or three times of applications of EPN were effective regardless of nematode strain and concentration in pot. Efficacy of EPN was different depending on vegetable species. Efficacy was higher on Chinese cabbage, red mustard, and Ssamchoo than that on cabbage, kale, and leaf broccoli. Efficacy of GSN1, Steinernema GSNUS-10, Steinernema CSNUS-14, and Heterorhabditis GSNUH-1 was variable depending on nematode strain, concentration, application times, and vegetable in greenhouse experiments. GSN1 was the most effective and 100,000 infective juveniles per m$^2$(=$1\times10^9$ Ijs/ha) resulted in higher efficacy. Three times of application of nematodes led to higher control efficacy than one or two applications. Efficacy of nematodes was higher on Chinese cabbage than cabbage or kale in greenhouse.

Analysis of the Defects in Wooden Landscape Facilities according to the Type of Timber - Focused on the Defects in Pillars of Out Door Rest Furniture - (목재 조경시설물의 목재 종류별 하자분석 - 휴게시설물 목재기둥의 균열하자를 중심으로-)

  • Park, Won-Kyu;Shin, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.81-90
    • /
    • 2012
  • Improvements in the quality of life have resulted in a heightened awareness of safety and the environment. As a result, timber as an environmentally friendly material, is used for landscape facilities and a wide range of purposes. But there are a large number of defects since there are twists and cracks that can be found in wooden landscape facilities. This has led to the use of imported hardwood instead of the Western Hemlock which has been in widespread use. Hardwood is expensive. However, it is being used without any information or research on how much it reduces the actual defects. Construction contractors are in great need of information on the characteristics and defect rates of different types of timber. This study investigated and analyzed the cracks in four types of timber - namely the Western Hemlock, Burckella, Nyatoh and Malas - in order to provide basic information to construction contractor for them to be able to select and use the appropriate type of timber. The main results of this study are as follows. First, the Western Hemlock had 1.90 $cracks/m^2$, Malas had 0.83 $cracks/m^2$, Burckella had 0.14 $cracks/m^2$, and the Nyatoh had the least number of surface defects at 0.04 $cracks/m^2$. Second, while Malas has the highest degree of strength timber, Nyatoh had the smallest defect rate. This showed that having high timber strength does not necessarily mean it has less defects. Third, the Western Hemlock was the least expensive and Burckella was the most expensive. However, considering the cost of repairing defects, it would be economically advantageous to use Burckella and Nyatoh which have low defect rates. This study aimed to provide basic information to landscape construction contractors for them to be able to select and use the appropriate type of timber when constructing wooden outdoor rest furniture. The results are expected to contribute to quality enhancements and defect reduction in landscape facilities.

Development and Application of Okara-based Adhesives for Plywood Panels (두부비지를 이용한 합판용 접착제의 개발 및 적용)

  • Oh, Sei-Chang;Ahn, Sye-Hee;Choi, In-Gyu;Jeong, Han-Seob;Yoon, Young-Ho;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.30-38
    • /
    • 2008
  • Petroleum-based resin adhesives have extensively been used for the production of wood panels. However, with the increase of manufacturing cost and the environmental issue, such as the emission of volatile organic compounds, of the adhesive resins, it is necessary to be developed new adhesive systems. In this study, the potential of okara, which is a residue wasted from the production of tofu, for the development of bio-based adhesives was investigated. At first, the physical and chemical properties of okara were examined. After okara was hydrolyzed in acidic and/or alkaline solutions, okara-based adhesive resins were formulated with the mixtures of the okara hydrolyzates and phenol formaldehyde (PF) prepolymer. The adhesive resins were used for the fabrication of plywood panels, and then the adhesive strength and formaldehyde emission of the plywood panels were measured to examine the applicability of the resin adhesives for the production of plywood panels. The solids content and pH of the okara used in this study were around 20% and weak acidic state, respectively. In the analysis of its chemical composition, the content of carbohydrate was the highest, and followed by protein. The shear strengths of plywood fabricated with okara-based resin adhesives exceeded a minimum requirement of KS standard for ordinary plywood, but its wood failure did not reach the minimum requirement. In addition, the formaldehyde emissions of all plywood panels were higher than that of E1 specified in the KS standard. Based on these results, okara has the potential to be used as a raw material of environmentally friendly adhesive resin systems for the production of wood panels, but further researches - biological hydrolysis of okara and various formulations of PF prepolymer - are required to improve the adhesive strength and formaldehyde emission of okara-based resin adhesives.

Determination of Optimal Application Rates of Phosphorus and Potassium Fertilizers for Paddy Rice (벼에 대한 인산 및 칼리질비료의 적정시비량 결정)

  • Song, Yo-Sung;Jun, Hee-Joong;Park, Woo-Kyun;Jung, Beung-Gan;Jung, Kyu-Seok;Lee, Ki-Sang;Yoon, Young-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.75-82
    • /
    • 2008
  • In order to establish environmentally friendly phosphorus(P) and potassium(K) fertilizer application rates for rice cultivation in Korea, a field experiment was conducted in two different characterized paddy soils, higher and lower P and K content in soil from 2005 to 2006 in Suwon, Korea. Chuchong which is typical rice variety in Korea, was selected for experiment. Rice yields in base P-K fertilizer level ($30-30kg\;ha^{-1}$) and no P-K fertilizer level were 97~98% and 93~97% of standard P-K fertilizer level ($45-57kg\;ha^{-1}$), respectively. At the lower content of P and K in immatured paddy soil, the yield of no P plot was decreased by 7% compared to that of standard P-K plot. Significant difference in rice yield and yield characteristics was found neither in standard P-K fertilization plot nor in base P-K fertilization plot. There was no significant difference in P and K uptake at the harvest stage between standard P-K fertilizer plot and base P-K fertilizer plot. Phosphorus and K uptake was slightly decreased in no fertilizer plots compared to standard fertilizer plot. Phosphorus and K use efficiency of rice plant in base fertilizer plot was higher than that in standard fertilizer plot. Available phosphorus and exchangeable potassium content in soil at the harvest stage were increased in both standard and base fertilizer plot. But no significant difference of P and K content in ? was found between standard fertilizer plot and base fertilizer plot. Rice quality characteristics such as proportion of brewers rice, damaged kernel, broken rice, and content of amylose and protein were lowered in the base fertilizer plot than the standard fertilized plot, while the proportion of perfect kernel increased in the base fertilizer plot From the results, we generally recommend the base P-K fertilization ($30-30kg\;ha^{-1}$) instead of standard P-K fertilization ($45-57kg\;ha^{-1}$) for rice cultivation in Korea.

Studies on the Evaluation of Kenaf as a Bulking Agent in Livestock Composting (가축 분뇨의 퇴비화 수분 조절제로서 Kenaf의 유용성 평가)

  • Lim, Jeong-Ju;Kim, Dong-Hyeok;Lee, Jin-Ju;Kim, Dae-Geun;Lee, Hu-Jang;Min, Wongi;Park, Dongjin;Huh, Moo-Ryong;Chang, Hong-Hee;Kim, Pil-Joo;Kim, Suk
    • Journal of agriculture & life science
    • /
    • v.45 no.2
    • /
    • pp.21-28
    • /
    • 2011
  • Hibiscus cannabinus L is a plant in the Malvaceae family. Kenaf was seeded at June 1st in 2010 and harvested at November 18th and dried and evaluated worth as a bulking agent for livestock composting. Harvested and dried Kenaf was divided into the bast, core and leaf. All materials were grinded by hammer mill and the moisture absorption, moisture evaporation, pH, volume weight and C/N ratio were measured. Kenaf was higher water absorption and evaporation ability than those of sawdust and chaff. The pH values of Kenaf were pH $2.8{\pm}0.01$ - $4.34{\pm}0.02$, which is lower pH value than those of sawdust (pH $5.28{\pm}0.01$) and chaff (pH $6.3{\pm}0.02$). The C/N ratio of Kenaf showed 649 of core, 204 of bast and 70 of leaf, which were lower than sawdust (789.1) but higher than chaff (132). In volume weight test, the materials were divided by particle size of Kenaf, named as group A(${\geq}4cm$), B(${\leq}4cm$, ${\geq}0.25cm$) and C(${\leq}0.25cm$). The volume of weight of group A and B for core, bast and leaf showed similar, but group C showed higher than those of sawdust and chaff. Especially, the volume weight of group C for leaf was 5 times higher than those of sawdust and chaff. This study suggested the possibility of using Kenaf as a bulk agent for composting of livestock manure. This is considered that strengthen the competitiveness of farmers through reducing the cost, prevention of environmental pollution caused by livestock manure and environmentally friendly processing of livestock manure.

Growth and Quality of Two Melon Cultivars in Hydroponics Affected by Mixing Ratio of Coir Substrate and Different Irrigation Amount on Spring Season (멜론 봄 재배 시 코이어 배지경에서 배지 혼합 비율과 급액량에 따른 생육 및 품질)

  • Choi, Su hyun;Lim, Mi Yeong;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.376-387
    • /
    • 2019
  • Melons are mostly grown in soil, but it is susceptible to damage due to injury by continuous cropping such as Fusarium wilt and root rot. Hydroponic cultivation system can overcome the disadvantages of soil cultivation with precise nutrition management and a clean environment. When using the coir substrate, the most environmentally friendly organic substrate used for hydroponics, it is analyzed how the growth and fruit quality of the melon depends on the ratio of chips and dust and the amount of irrigation. The purpose of this study was to provide the basic data of melon hydroponics when cultivated in spring. The two types of the coir substrates used in the experiments were chip and dust ratios of 3 :7 and 5 : 5 respectively. The substrate with high dust ratios had excellent physical characteristics, such as container capacity and total porosity, and the drainage EC level showed a high value of $3.0-6.8dS{\cdot}m^{-1}$. When the amount of irrigation is provided based on the drainage rate, the group provided the nutrient solution on the basis of 10% drainage supplied 91 L per plant, which was reduced by about 30% compared to the group with the highest water supply. In addition, the total drainage showed less than 10 L per plant with a minimum water supply and was reduced by 30 - 70% in substrate with a high dust rates. In substrate with high water supply and high dust ratio, leaf growth and fruit enlargement were good, and the soluble solids content varies greatly from cultivar to cultivar. If you provided the amount of irrigation based on 10% drainage rate, the fruit weight will be decreased, but the amount of irrigation can be reduced. Therefore, it is considered that managing the water & nutrient properly taking into account the characteristics of coir substrate and cultivar can produce melon of uniform quality using hydroponics.

Assessment of Environmentally Sound Function on the Increasing of Soil Fertility by Korean Organic Farming (한국 토착유기농업의 토양비옥도 증진책에 대한 환경보전적 기능 평가)

  • Sohn, Sang-Mok;Han, Do-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.193-204
    • /
    • 2000
  • In order to get some basic data on environmental friendly function by Korean organic farming, the chemical characteristics of soil were determined on 100 farm cultivating site in Paldang watershed area of Great Seoul. The EC and content of $NO_3-N$ and Av. $P_2O_5$ in topsoil(0~30cm) showed $2.30dS\;m^{-1}$, $82mg\;kg^{-1}$, $918mg\;kg^{-1}$ in the soil cultivated chinese cabbage. $2.29dS\;m^{-1}$, $86mg\;kg^{-1}$, $954mg\;kg^{-1}$ in the soil of lettuce, $1.83dS\;m^{-1}$, $66mg\;kg^{-1}$, $1114mg\;kg^{-1}$ in the soil of crown daisy. These salt accumulation(EC) and the high concentration of mineral content in topsoil such as nitrate and phosphate showed the soils of organic farming were contaminated by practice of organic farming for the maintenance strategy of soil fertility. The $NO_3-N$ and Av. $P_2O_5$ in the subsoil(30~60cm) showed $75mg\;kg^{-1}$ and $641mg\;kg^{-1}$, $72mg\;kg^{-1}$ and $466mg\;kg^{-1}$, $42mg\;kg^{-1}$ and $873mg\;kg^{-1}$ in soil cultivated chinese cabbage, lettuce and crown daisy respectively. It indicates eventually the high concentration of nitrate and phosphate in topsoil caused penetration to subsoil, and the high concentration of mineral contents in subsoil indicate the potential risk of leaching of ground water by Korean organic farming. The positive correlation at 1% between EC and $NO_3-N$, $K_2O$, T-C, $P_2O_5$ and T-N show the salt accumulation in the both soil depth of Korean organic farming were caused by minerals such as $NO_3-N$, $K_2O$, T-C, $P_2O_5$ and T-N by overuse of organic fertilizer.

  • PDF

The Effect of CO2 Fixation for Microalgae based on CO2 Concentration and Flow Rate (이산화탄소 농도 및 유속에 따른 하천 내 미세조류의 이산화탄소 고정 효과)

  • Park, Hyomin;Lee, Sangdon
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.363-369
    • /
    • 2018
  • One of the recent environmental problems is climate change due to the increase of atmospheric $CO_2$, which causes ecological changes and various environmental problems. Therefore, various studies are being carried out to reduce $CO_2$ in the world in order to solve various environmental problems caused by increase of $CO_2$. The $CO_2$ reduction using microalgae is an environmentally friendly method by using photosynthesis reaction of microalgae. However, most studies using single species. There is no study on the $CO_2$ fixing efficiency of microalgae in natural rivers. Therefore, this study was to identify the microalgae in the Sum river and to analyze the growth characteristics of microalgae in the river to obtain optimal culture conditions. And the changes of biomass and chlorophyll-a of microalgae were analyzed according to $CO_2$ concentration and injection rate. The purpose of this study was to investigate the fixing efficiency of carbon dioxide in microalgae in natural rivers. Six kinds of dominant species were observed as a result of the identification of microalgae in Sum river(Ankistrodesmus falcatus, Scenedesmus intermedius, Selenodictyum sp., Xanthidium apiculatum var. laeve, Cosmarium pseudoquinarium, Dictyosphaerium pulchellum). All of these species were green algae. Biomass and chlorophyll-a increased with the increase of $CO_2$ concentration and biomass and chlorophyll-a increased faster flow rate at the same $CO_2$ concentration. Also, the quantity of $CO_2$ fixation on the microalgae tended to be higher when the flow rate of injected gas was faster. This study can be referred as being significant in the micro-algae in river. In addition, the optimal conditions for $CO_2$ fixation of microalgae in rivers and the quantification of the quantity of $CO_2$ fixation from microalgae in rivers can be used as basic data for future policy of $CO_2$ reduction.