• Title/Summary/Keyword: Environmentally Friendly Utilization

검색결과 61건 처리시간 0.026초

농촌경관의 보전과 경관관리를 위한 농촌경관계획 수립 및 적용방안 관한 기초연구 - 예산군을 사례로 - (Visual Landscape Plan for Conservation and Management in Rural Landscape Character Area)

  • 김상범;이승연;김은자;이승주;이상영
    • 농촌계획
    • /
    • 제15권4호
    • /
    • pp.161-172
    • /
    • 2009
  • This study focuses on the application of landscape planning(i.e. including rural landscape character area designation and rural landscape planning etc.). That application of landscape planning provides the probably most operable and comprehensive version of what is generally accepted by the discipline. According to the planning discipline the schemes of planning are to; Firstly, we derived the improvement of landscape and the methods of landscape characterization subsequent to analyze the present condition and grasp the landscape resources in Yesan via reviewing the current study and field survey. Secondly, in order to achieve environmentally friendly rural landscape plan and characteristic rural landscape creation, we planed the draft landscape area such as woodland, hydrology area, urbanized area, rural communities, etc. which was classified by sphere of life moreover, we planed partly outdoor facilities, road and colour suchlike. Thirdly, we tried to seek the programme of conservation and utilization for scenic and characteristic rural landscape area via rural landscape character area designation. Lastly, it is proposed that rural landscape planning lead to inhabitant participation, system improvement, subject performance for carrying out efficient rural landscape planning.

녹색가게 이용자의 의복 재사용 실태와 의복 태도에 관한 연구 (A Study on the Practices of Clothing Reuses and Clothing Attitudes by the Green Store Users)

  • 김인숙;석혜정
    • 한국의류학회지
    • /
    • 제28권8호
    • /
    • pp.1088-1099
    • /
    • 2004
  • This study looked into the features of the consumers who positively reuse the clothing through their actual exchanges at second-hand clothing stores. The findings indicate that it shows the features of the consumers who perform the environmental activities by treating the clothing to be actually left unused, in an environmentally-friendly way, and that it may present the programs that will be able to create more consumers on the basis of its findings. The study used the questionnaire method, and the subjects were selected among those who have the experience of buying the second-hand clothing. The findings are as follows. 1. The major users of Green stores were found to be many among the females in their forties by the age, with 2 million Won or more by the income, of the graduates of high school or higher by the educational background, or of the housekeepers with children by the job. 2. The practices for the Green store utilization showed the highest ratios in one or two times of uses a month, one to four pieces of purchases a month, female clothing by the article, or trousers by the purchasing item. 3. As for the level of satisfaction after the clothing purchase at green stores, 70 percent of the respondents were satisfied, and the high ratios were seen with "the price was very low" or "since it seemed to support the environmental issues" by the reason for the satisfaction. 4. The findings on the clothing attitudes by the green store users showed fashion and social status symbol (factor 1), feminine modesty (factor 2), convenience (factor 3), alignment (factor 4), and economy (factor 5).

플로팅 호텔의 건축계획에 대한 사례연구 (A Case Study on the Architectural Planning of Floating Hotel)

  • 문창호
    • 한국항해항만학회지
    • /
    • 제35권6호
    • /
    • pp.515-522
    • /
    • 2011
  • 이 연구는 플로팅 호텔의 건축계획에 대한 것으로, 관련 문헌과 인터넷 검색을 통하여, 플로팅 호텔의 개념을 살펴보고, 사례를 분석하여, 앞으로 플로팅 호텔 계획을 위한 참고자료를 제시하고자 한다. 플로팅 호텔은 수상 부유시스템을 갖는 건축물로서, 인간의 거주/휴양/업무/오락 등의 목적으로 사용되며, 자유로운 항해는 불가능하다. 연구대상 건축물들은 콰이강 뗏목 리조트가 1976년, Four Seasons Hotel은 1988년, Salt & Sill은 2008년 등의 순서로 건립되었다. 플로팅 호텔의 규모는 층과 실의 개수 등의 측면에서 다양하고, 부대시설로는 다양한 기본시설, 문화시설, 운동시설, 해양관련 시설 등이 있다. 플로팅 호텔의 건축적 특징으로는, 설비 자립화, 친환경 건축계획, 재생에너지의 활용, 복합재료 도입, 호텔을 회전을 통한 모든 객실에 동등한 경관 제공 등을 들 수 있다.

Hybrid adaptive neuro fuzzy inference system for optimization mechanical behaviors of nanocomposite reinforced concrete

  • Huang, Yong;Wu, Shengbin
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.515-527
    • /
    • 2022
  • The application of fibers in concrete obviously enhances the properties of concrete, also the application of natural fibers in concrete is raising due to the availability, low cost and environmentally friendly. Besides, predicting the mechanical properties of concrete in general and shear strength in particular is highly significant in concrete mixture with fiber nanocomposite reinforced concrete (FRC) in construction projects. Despite numerous studies in shear strength, determining this strength still needs more investigations. In this research, Adaptive Neuro-Fuzzy Inference System (ANFIS) have been employed to determine the strength of reinforced concrete with fiber. 180 empirical data were gathered from reliable literature to develop the methods. Models were developed, validated and their statistical results were compared through the root mean squared error (RMSE), determination coefficient (R2), mean absolute error (MAE) and Pearson correlation coefficient (r). Comparing the RMSE of PSO (0.8859) and ANFIS (0.6047) have emphasized the significant role of structural parameters on the shear strength of concrete, also effective depth, web width, and a clear depth rate are essential parameters in modeling the shear capacity of FRC. Considering the accuracy of our models in determining the shear strength of FRC, the outcomes have shown that the R2 values of PSO (0.7487) was better than ANFIS (2.4048). Thus, in this research, PSO has demonstrated better performance than ANFIS in predicting the shear strength of FRC in case of accuracy and the least error ratio. Thus, PSO could be applied as a proper tool to maximum accuracy predict the shear strength of FRC.

Alkaline induced-cation crosslinking biopolymer soil treatment and field implementation for slope surface protection

  • Minhyeong Lee;Ilhan Chang;Seok-Jun Kang;Dong-Hyuk Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.29-40
    • /
    • 2023
  • Xanthan gum and starch compound biopolymer (XS), an environmentally friendly soil-binding material produced from natural resources, has been suggested as a slope protection material to enhance soil strength and erosion resistance. Insufficient wet strength and the consequent durability concerns remain, despite XS biopolymer-soil treatment showing high strength and erosion resistance in the dried state, even with a small dosage of soil mass. These concerns need to be solved to improve the field applicability and post-stability of this treatment. This study explored the utilization of an alkaline-based cation crosslinking method using calcium hydroxide and sodium hydroxide to induce non-thermal gelation, resulting in the enhancement of the wet strength and durability of biopolymer-treated soil. Laboratory experiments were conducted to assess the unconfined compressive strength and cyclic wetting-drying durability performance of the treated soil using a selected recipe based on a preliminary gel formation test. The results demonstrated that the uniformity of the gel structure and gelling time varied depending on the ratio of crosslinkers to biopolymer; consequently, the strength of the soil was affected. Subsequently, site soil treated with the recipe, which showed the best performance in indoor assessment, was implemented on the field slope at the bridge abutment via compaction and pressurized spraying methods to assess feasibility in field implementation. Moreover, the variation in surface soil hardness was monitored periodically for one year. Both slopes implemented by the two construction methods showed sufficient stability against detachment and scouring, with a higher soil hardness index than the natural slope for a year.

A novel analytical evaluation of the laboratory-measured mechanical properties of lightweight concrete

  • S. Sivakumar;R. Prakash;S. Srividhya;A.S. Vijay Vikram
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.221-229
    • /
    • 2023
  • Urbanization and industrialization have significantly increased the amount of solid waste produced in recent decades, posing considerable disposal problems and environmental burdens. The practice of waste utilization in concrete has gained popularity among construction practitioners and researchers for the efficient use of resources and the transition to the circular economy in construction. This study employed Lytag aggregate, an environmentally friendly pulverized fuel ash-based lightweight aggregate, as a substitute for natural coarse aggregate. At the same time, fly ash, an industrial by-product, was used as a partial substitute for cement. Concrete mix M20 was experimented with using fly ash and Lytag lightweight aggregate. The percentages of fly ash that make up the replacements were 5%, 10%, 15%, 20%, and 25%. The Compressive Strength (CS), Split Tensile Strength (STS), and deflection were discovered at these percentages after 56 days of testing. The concrete cube, cylinder, and beam specimens were examined in the explorations, as mentioned earlier. The results indicate that a 10% substitution of cement with fly ash and a replacement of coarse aggregate with Lytag lightweight aggregate produced concrete that performed well in terms of mechanical properties and deflection. The cementitious composites have varying characteristics as the environment changes. Therefore, understanding their mechanical properties are crucial for safety reasons. CS, STS, and deflection are the essential property of concrete. Machine learning (ML) approaches have been necessary to predict the CS of concrete. The Artificial Fish Swarm Optimization (AFSO), Particle Swarm Optimization (PSO), and Harmony Search (HS) algorithms were investigated for the prediction of outcomes. This work deftly explains the tremendous AFSO technique, which achieves the precise ideal values of the weights in the model to crown the mathematical modeling technique. This has been proved by the minimum, maximum, and sample median, and the first and third quartiles were used as the basis for a boxplot through the standardized method of showing the dataset. It graphically displays the quantitative value distribution of a field. The correlation matrix and confidence interval were represented graphically using the corrupt method.

Effects of biochar-based fertilizer on ammonia volatilization under controlled conditions

  • Yun-Gu Kang;Jae-Han Lee;Jun-Yeong Lee;Jun-Ho Kim;Taek-Keun Oh
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.437-446
    • /
    • 2023
  • As the interest in sustainable and environmentally friendly agriculture continues to grow, there is a corresponding increase in organic fertilizers utilization. However, studies on ammonia (NH3) emissions, which are primarily generated in the agricultural sector, by organic fertilizers are lacking. Additionally, the reliance on imported ingredients in the production of organic fertilizers hinders the widespread adoption of organic fertilizers. This study aims to evaluate NH3 volatilization by incorporating rice husk biochar into organic fertilizers. The study also aims to assess whether domestically produced rice husk biochar can serve as a viable substitute for imported ingredients. Here, the dynamic chamber method was used under controlled conditions. Results show that inorganic fertilizers readily undergo hydrolysis, thereby rapidly generating significant amounts of NH3, particularly in the initial stages. In contrast, organic fertilizers decompose gradually, leading to relatively long-term NH3 emissions. The incorporation of rice husk biochar into organic fertilizers demonstrated diminished daily NH3 emissions compared to those from commercial organic fertilizers, resulting in decreased total NH3 volatilization. These findings show that the combination of rice husk biochar can reduce NH3 volatilization and serve as an alternative to imported ingredients for organic fertilizers. The results of this study can be utilized as fundamental information for the assessment of biochar as a potential ingredient for organic fertilizers.

Quality attributes and shelf-life of freshly cut beef coated with waste feather keratin-ginger starch composite enriched with avocado peel polyphenolic-rich extract

  • Olarewaju M Oluba;Samuel I Ojeaburu;Opeyemi A Bayo-Olorunmeke;Georgina Erifeta;Sunday J Josiah
    • 한국식품저장유통학회지
    • /
    • 제31권1호
    • /
    • pp.1-14
    • /
    • 2024
  • The utilization of coatings composed of bio-based materials in the processing and preservation of meat presents an environmentally conscious, secure, cost-effective, and superior method for prolonging the storage life of meat while also preserving its nutritional value. In this study, changes in physical, chemical, and microbiological characteristics of freshly cut beef coated with distilled water (control) and keratin-starch composites (K-S) functionalized with 0.0-, 0.2-, 0.6-, and 1.0-mL avocado peel polyphenolic-rich extract (APPPE) kept at 4℃ for 12 days were evaluated periodically at 3-day interval using standard techniques. Keratin was extracted from waste feathers, while starch was obtained from ginger rhizomes. Following a 12-day storage period, beef coated with APPPE-enriched K-S composites exhibited a significant (p<0.05) improvement in shelf life by minimizing deteriorative changes in pH and color (as determined by metmyoglobin level) in addition to inhibiting oxidative changes in lipids (as determined by TBARS level) and proteins (protein carbonyl level) in comparison to control and K-S composite without APPPE. Furthermore, microbial growth was significantly (p<0.05) suppressed in meat coated with K-S composite functionalized with APE at 0.6 and 1.0 mL compared to the control. The study suggested that APPPE-enriched K-S composite could offer an eco-friendly and safe food preservation technique for fresh meat.

물류산업단지의 운영모델 설계 - 운송 네트워크를 중심으로- (Operation Model Design of Logistics Industrial estate -Focused on Transportation Network-)

  • 신재영;김웅섭
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2013년도 춘계학술대회
    • /
    • pp.214-215
    • /
    • 2013
  • 기업들의 경쟁이 지역적, 시간적 제약을 벗어나 세계화 되고 있는 현재, 고객 서비스 향상과 물류비용절감을 위해 효율적인 물류시스템을 구축하고 운영하는 것에 많은 노력을 기울이고 있는 실정이다. 따라서 기업들이 공동화지역을 이루어 비용 경쟁력을 가질 수 있는 친환경 산업단지의 필요성이 증대되고 있는 실정이다. 이러한 물류단지를 구축하기 위해서는 적절한 정책과 화물수송 공동화를 통한 물류시스템이 필요하다. 특히, 산업 단지내 물류시스템의 체계구축을 통한 효율적인 운영은 물류도시의 저비용 친환경적인 측면에서 매우 중요하다. 적절한 운영모델이 네트워크에 활용되면 집화된 수송량이 보다 적절한 수단들과 기술들에 의해 수송되기 때문에 효율성이 제고될 수 있다. 그러나 이러한 장점에도 불구하고 문제의 복잡성 등으로 인하여 네트워크 설계 연구는 활발하게 수행되지 않았다. 따라서 본 연구에서는 물류체계를 분석하고 분석내용을 바탕으로 물류단지의 모형화를 위한 기본설정 및 시뮬레이션을 통한 운영모형을 제시함으로서 물류산업단지의 기반구축 자료를 제시하는데 목적이 있다.

  • PDF

목탄을 이용한 친환경 건축자재 이용기술(II) - 목탄 함유 건축자재의 에너지 절감 및 차음 특성에 관한 연구 (Utilization of Charcoal as an Environmentally Friendly Building Materials (II) - A Study on the Energy Saving and Sound Insulation Characteristics of Building Materials Prepared with Charcoal -)

  • 안병준;백기현
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권1호
    • /
    • pp.41-52
    • /
    • 2011
  • 본 연구는 목탄을 첨가한 건축자재의 에너지 절감 및 차음특성을 조사하기 위하여 수행되었다. 건축자재 형태에 따른 특성을 조사하기 위하여 3동의 실험 건물을 신축하였다. 이들 실험 건물은 각각 일반건축자재(A), 목탄건축자재(B) 및 목탄 sericite 건축자재(C)를 사용하여 신축하였다. 건축자재 형태별 동절기의 보일러 난방 기름소모량을 조사한 결과, B를 사용할 경우 A를 사용한 건물과 비교하여 평균 9.5%, C를 사용할 경우에는 평균 14.9%의 기름절감 효과를 나타냈다. 특히 기름 절감효과는 외부기온이 낮을수록 큰 것으로 조사되었다. 또한 B를 적용한 건물은 A나 C를 사용한 건물과 비교하여, 난방온도가 상당히 완만하게 낮아졌으며, 보일러 가동 중단 12시간 경과 후 지상 1미터 공기부에서 $3.5{\sim}4.2^{\circ}C$, 바닥표면에서는 $4.4{\sim}5.4^{\circ}C$ 높게 나타났다. 건물 소음시험에 있어서는, 목탄을 포함하는 시험체는 다층건물의 층간소음 기준으로 대표되는 중량충격음과 경량충격음 모두에서 저감효과를 나타냈다.