• Title/Summary/Keyword: Environmental surface

Search Result 7,919, Processing Time 0.032 seconds

Rainfall Intensity Regulating Surface Erosion and Its Contribution to Sediment Yield on the Hillslope Devastated by a Shallow Landslide (산사태 붕괴사면에 있어서 표면침식에 영향을 미치는 강우강도와 그에 따른 유출토사량의 변화)

  • Kwon, Se Myoung;Seo, Jung Il;Cho, Ho Hyoung;Kim, Suk Woo;Lee, Dong Kyun;Ji, Byoung Yun;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.4
    • /
    • pp.314-323
    • /
    • 2013
  • To examine surface erosion and sediment export patterns on a hillslope, which was devastated by a shallow landslide and which was slowly revegetating by natural plant species, we surveyed variations in surface erosion depth on the upper-, middle- and lower-section of the hillslope, and subsequent sediment yield from the whole hillslope. The result showed that, with the passing of year, surface erosion on the devastated hillslope was regulated by higher rainfall intensity due to the supply-limitation of exportable sediment, and its variation range decreased. In addition, surface erosion on the upper-section with steep slope was regulated by higher rainfall intensity, which might result in raindrop erosion, compared to it on the lower-section with relatively gentle slope. Besides, the sediment yield from the devastated hillslope had nonlinear relationship with surface erosion depth on the hillslope because sediments on the hillslope are exported downwards while repeating their cycle of transport and redistribution. Our findings suggest the establishment of management strategy to prevent sediment-related disasters occurred during torrential rainfall events, which was based on the continuous field investigation on the hillslope devastated by landslides.

Analysis of Siloxane Adsorption Characteristics Using Response Surface Methodology

  • Park, Jin-Kyu;Lee, Gyeung-Mi;Lee, Chae-Young;Hur, Kwang-Beom;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.117-122
    • /
    • 2012
  • A central composite design and response surface methodology were applied to investigate the optimum conditions for maximum adsorption capacity in activated alumina as an adsorbent. The optimized conditions were determined for adsorption capacity using variables of flow rate and temperature. It was found that flow rate and temperature greatly influenced the adsorption capacity, as determined by analysis of variance analysis of these variables. Statistical checks indicated that second order polynomial equations were adequate for representing the experimental values. The optimum conditions for adsorption capacity were $0^{\circ}C$ and 2,718 mL/min, with the estimated maximum adsorption capacity of 17.82%. The experimental adsorption capacity was 17.75% under these optimum conditions, which was in agreement with the predicted value of 17.82%.

Characteristics on Land-Surface and Soil Models Coupled in Mesoscale Meteorological Models (중규모 기상모델에 결합된 육지표면 및 토양 과정 모델들의 특성)

  • Park, Seon K.;Lee, Eunhee
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.1-16
    • /
    • 2005
  • Land-surface and soil processes significantly affect mesoscale local weather systems as well as global/regional climate. In this study, characteristics of land-surface models (LSMs) and soil models (SMs) that are frequently coupled into mesoscale meteorological models are investigated. In addition, detailed analyses on three LSMs, employed by the PSU/NCAR MM5, are provided. Some impacts of LSMs on heavy rainfall prediction are also discussed.

Seasonal Variability of Thermal Structure and Heat Flux in the Juam Reservoir (주암호의 계절별 수온 구조와 열수지 변화)

  • Sun, Youn-Jong;Cho, Cheol;Kim, Byong-Chun;Huh, In-Aa;Yoon, Jun-Heon;Chang, Nam-Ik;Cha, Sung-Sik;Cho, Yang-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.277-285
    • /
    • 2003
  • Temperature profiles were observed to understand seasonal variation of thermal structures in the Juam reservoir from March 2000 to May 2001. Heat flux which affects thermal structures was calculated by observed water temperature and meteorological data. Temperature became homogeneous vertically by convection due to the surface cooling in winter. Maximum heat loss through the surface (109.45W/$m^2$) occurred in December. There was a horizontal gradient of water temperature in winter. The temperature was $3^{\circ}C$ at upstream and $5^{\circ}C$ near the dam. The surface temperature increased by the increase of solar radiation in spring and summer. Maximum heat gained through the surface was 101.95 W/$m^2$ in July. Maximum surface temperature was $29^{\circ}C$ in August, whereas the bottom water was $7^{\circ}C.$ Surface mixed layer became thicker and its temperature decreased by surface heat loss in fall and winter.

Relationship between Sea Surface Temperature and Air Temperature Variation Depend on Time Scale at Coastal Stations in Korea (시간스케일에 따른 해양표면수온과 기온의 변동 및 상관연구)

  • 장이현;강용균;서영상
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.303-309
    • /
    • 2000
  • The relationship between air temperature and sea surface temperature and studied using the daily air temperature and sea surface temperature data for 25 years (1970~1994) at 9 coastal stations in Korea. Seasonal variations of air temperature have larger amplitudes than those of sea surface temperature. The seasonal variations of air temperature leads those of sea surface temperature by 2 to 3 weeks. The anomalies of sea surface temperature and air temperature with time scales more than 1 month are more ghighly correlated than those of short term, with time scales less than 1 month. Accumulated monthly anomalies of sea surface temperature and air temperature for 6 months shwoed higher correlation than the anomailes of each month. The magnitudes of sea surface temperature and air temperature anomalies are related with the duration of anomalies. Their magnitudes are large when the durations of anomalies are long.

  • PDF

Microbial Removal Using Layered Double Hydroxides and Iron (Hydr)oxides Immobilized on Granular Media

  • Park, Jeong-Ann;Lee, Chang-Gu;Park, Seong-Jik;Kim, Jae-Hyeon;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.149-156
    • /
    • 2010
  • The objective of this study was to investigate microbial removal using layered double hydroxides (LDHs) and iron (hydr)oxides (IHs) immobilized onto granular media. Column experiments were performed using calcium alginate beads (CA beads), LDHs entrapped in CA beads (LDH beads), quartz sand (QS), iron hydroxide-coated sand (IHCS) and hematite-coated sand (HCS). Microbial breakthrough curves were obtained by monitoring the effluent, with the percentage of microbial removal and collector efficiency then quantified from these curves. The results showed that the LDH beads were ineffective for the removal of the negatively-charged microbes (27.7% at 1 mM solution), even though the positively-charged LDHs were contained on the beads. The above could be related to the immobilization method, where LDH powders were immobilized inside CA beads with nano-sized pores (about 10 nm); therefore, micro-sized microbes (E. coli = 1.21 ${\mu}m$) could not diffuse through the pores to come into contact with the LDHs in the beads, but adhere only to the exterior surface of the beads via polymeric interaction. IHCS was the most effective in the microbial removal (86.0% at 1 mM solution), which could be attributed to the iron hydroxide coated onto the exterior surface of QS had a positive surface charge and, therefore, effectively attracted the negatively-charged microbes via electrostatic interactions. Meanwhile, HCS was far less effective (35.6% at 1 mM solution) than IHCS because the hematite coated onto the external surface of QS is a crystallized iron oxide with a negative surface charge. This study has helped to improve our knowledge on the potential application of functional granular media for microbial removal.

Low-Temperature Thermal Decomposition of Industrial N-Hexane and Benzene Vapors (산업 발생 노르말헥산과 벤젠 증기의 저온 분해)

  • Jo Wan-Kuen;Lee Joon-Yeob;Kang Jung-Hwan;Shin Seung-Ho;Kwon Ki-Dong;Kim Mo-Geun
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.635-642
    • /
    • 2006
  • Present study evaluated the low-temperature destruction of n-hexane and benzene using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst. The parameters tested for the evaluation of catalytic destruction efficiencies of the two volatile organic compounds(VOC) included input concentration, reaction time, reaction temperature, and surface area of catalyst. It was found that the input concentration affected the destruction efficiencies of n-hexane and benzene, but that this input-concentration effect depended upon VOC type. The destruction efficiencies increased as the reaction time increased, but they were similar between two reaction times for benzene(50 and 60 sec), thereby suggesting that high temperatures are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Similar to the effects of the input concentration on destruction efficiency of VOCs, the reaction temperature influenced the destruction efficiencies of n-hexane and benzene, but this temperature effect depended upon VOC type. As expected, the destruction efficiencies of n-hexane increased as the surface area of catalyst, but for benzene, the increase rate was not significant, thereby suggesting that similar to the effects of the re- action temperature on destruction efficiency of VOCs, high catalyst surface areas are not always proper for economical thermal destruction of VOCs. Depending upon the inlet concentrations and reaction temperatures, almost 100% of both n-hexane and benzene could be destructed, The current results also suggested that when applying the mesh type transition Metal Pt/SS catalyst for the better catalytic pyrolysis of VOC, VOC type should be considered, along with reaction temperature, surface area of catalyst, reaction time and input concentration.

Contamination of Butyltin Compounds in Sediments inside Jeju Harbor of Jeju Island (제주도 제주항내 퇴적물 중의 부틸주석화합물의 오염)

  • Kam, Sang-Kyu;Hu, Chul-Goo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.655-665
    • /
    • 2011
  • Contamination of butyltin compounds (BTs), namely tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT), was evaluated in sediments collected inside Jeju Harbor in 2001. The concentrations of BTs in surface sediments were comparable to those in other sites of domestic and foreign countries. The high correlations between BTs in surface ($r^2$ = 0.83~0.91) and core ($r^2$ = 0.70~0.79) sediments and the significant correlations between BTs concentrations and the number of incoming and outgoing vessels indicated that DBT and MBT were mainly degraded from TBT based on antifouling paints of vessels etc. and other sources, such as DBT and MBT, could be ignored. The butyltin degradation indices ([DBT] + [MBT]/[TBT]) in surface sediments were in the range of 2.2~3.6 (mean 2.7), indicating that the parent compound, TBT, was inflowed into the surface sediments a long ago, degraded and deposited. The sedimentation age of BTs contaminated core sediments could not estimated because the content of $^{210}Pb$ activity was nearly all the same and so the sedimentation rate could not obtained.

Surface temperatures of public buildings, built in 1880, 1970 and 2002, in Northern Greece

  • Kosmopoulos, P.;Kantzioura, A.
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.79-95
    • /
    • 2013
  • The purpose of this paper is to investigate the surface temperatures of the shelter of three public buildings in the city of Xanthi, in northern Greece. The buildings were built in different time periods and consequently they have different technical characteristics. Respectively, we survey the three following buildings that have been built in 1880 (Municipality Hall of Xanthi), in 1970 (Municipality Amphitheatre) and in 2002 (Bank offices building). Data have been gathered by the use of thermal camera and the survey has been conducted from January up to July. The data gathered regard measurements of the surface temperature of the exterior walls of the shelters, both inside and outside. The study aims at the evaluation of the thermal behavior of the shelter of buildings, which built in different time and under different regulations. The gathered data of the surface temperatures compare the different thermal behavior of the shelter. The analysis of the results and diagrams show that the thick masonry of the traditional Municipality Hall offers an insulation that is adequate. The building of 1970, which was constructed with the previous buildings regulation, has thermal losses due to inadequate insulation. The new building of 2002 has low thermal losses.

Analysis of Street Trees and Heat Island Mosaic in Jung-gu, Daegu (대구광역시 중구의 가로수 및 열섬 모자이크 현황 분석)

  • Kim, Soo-Bong;Jung, Eung-Ho;Kim, Gi-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.325-332
    • /
    • 2006
  • The purpose of this paper is to suggest practical suggestions to mitigate Urban Heat Island(UHI) problems in Daegu regarding urban surface temperature. Urban street trees's size and the relations between urban land use types and surface temperature are analysed using aerial photos, the numerical value map and Landsat TM image with special reference to Jung-gu. Total urban street tree's crown size is $156,217.6m^2$ and it is equal to 2.24% of study area. In addition, the size of 'city and residential area' is $6,681,870m^2$(95.7% of study area), which causes UHI and the total size of 'river' shows the lowest surface temperature area and 'road' and 'business and service area' are the highest surface temperature zones. Therefore, it is probable that the network between urban street trees and the lowest surface temperature areas mitigate UHI effects.