• Title/Summary/Keyword: Environmental stressors

Search Result 92, Processing Time 0.024 seconds

Role of dietary nucleotides to mitigate post-weaning stress in newly weaned pigs

  • Shin, Taeg Kyun;Wickramasuriya, Samiru Sudharaka;Cho, Hyun Min;Kim, Eunjoo;Kim, Younghwa;Park, Juncheol;Macelline, Shemil Priyan;Heo, Jung Min;Yi, Young-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.477-486
    • /
    • 2017
  • This review provides an overview of dietary nucleotides as an alternative to in-feed antibiotics for weaning pigs. Dietary nucleotides are composed of DNA or RNA molecules and are normally contained in protein-rich feed ingredient, brewer's yeast, yeast extract, and milk. Weaning pigs are suffering from several stresses, such as environmental challenges (i.e. crowding, transportation, and feeding). Such stressors can damage the intestinal epithelium and cause an invasion by Escherichia coli, secondary inflammatory responses, and post weaning diarrhea. To overcome weaning disorder, people often use antibiotics which reduce symptoms and boost growth performance. However, since antibiotics were banned due to concerns of antibiotic resistant bacteria, researchers are studying alternative materials to antibiotics. Dietary nucleotides are one of the alternative materials for replacing antibiotics and can be used in abnormal conditions, such as weaning diarrhea, low digestibility, and disease condition. Nucleotides have substances that have important roles in cell division and cell growth, affecting growth performance, intestinal condition, and immunological effect at the weaning stage. However, nucleotides' composition is very different between sources and this aspect makes it difficult to utilize nucleotides at the weaning stage. Therefore, this review paper focuses on i) the characteristics and functions of dietary nucleotides and ii) the effect of dietary nucleotides on the growth performance and immune system of pigs.

Stress-induced Activity of Matrix Metalloproteinase in Tobacco Plants (담배식물체에서 스트레스에 따른 Matrix Metalloproteinase의 활성)

  • Oh, In-Suk;So, Sang-Sup
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.313-317
    • /
    • 2004
  • Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases produced by a variety of cell type, and have a fundamental role in the degradation and remodeling of extracellular matrix. In this study, we screened the secretion of MMPs in leaves of different developmental stages and in response to environmental stress using tobacco. Compare with fully maturing leaves and older leaves, the rate of MMPs activity was high in expanding and younger leaves. It is tempting to speculate that MMPs may be involved in tissue modeling, which must occur during leaf expansion. The MMPs activity in tobacco leaves grown in the presence of stressors showed a significantly increase at salinity treatment and pathogen infection. The MMPs activity in salinity and pathogen treatment increased respectively, by 1.2- and 1.5-fold with respect to the control. These results suggest that MMPs may be involved in plant defence against adverse environment and pathogenic infection.

Autophagy-related protein LC3 and Beclin-1 in the first trimester of pregnancy

  • Chifenti, Barbara;Locci, Maria Teresa;Lazzeri, Gloria;Guagnozzi, Mariangela;Dinucci, Dino;Chiellini, Federica;Filice, Maria Elena;Salerno, Maria Giovanna;Battini, Lorella
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.40 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • Autophagy is a degradation process that acts in response to environmental stressors. Recently, autophagy has been detected in normal term, preeclamptic and intrauterine growth-restricted placentas. The object of this work was to investigate the presence of autophagy in first trimester voluntary interruption of pregnancy placental villi by the expression of autophagy-related proteins, light chain 3 (LC3), and Beclin-1. In first trimester placental villi laser scanning confocal microscopy (LSCM) analysis revealed LC3 and Beclin-1 immunoreactivity prevalently located in villous cytotrophoblasts. Using LSCM, LC3, and Beclin-1 were localized to the cytoplasm of the trophoblast layer in human full-term placentas. Beclin-1 expression and LC3 activation were confirmed by western blotting. These data emphasize that autophagy activation is different among cytotrophoblasts and syncytiotrophoblasts depending on the gestational age and thus we speculate that autophagy might play a prosurvival role throughout human pregnancy.

Prediction of Non-Genotoxic Carcinogenicity Based on Genetic Profiles of Short Term Exposure Assays

  • Perez, Luis Orlando;Gonzalez-Jose, Rolando;Garcia, Pilar Peral
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.289-300
    • /
    • 2016
  • Non-genotoxic carcinogens are substances that induce tumorigenesis by non-mutagenic mechanisms and long term rodent bioassays are required to identify them. Recent studies have shown that transcription profiling can be applied to develop early identifiers for long term phenotypes. In this study, we used rat liver expression profiles from the NTP (National Toxicology Program, Research Triangle Park, USA) DrugMatrix Database to construct a gene classifier that can distinguish between non-genotoxic carcinogens and other chemicals. The model was based on short term exposure assays (3 days) and the training was limited to oxidative stressors, peroxisome proliferators and hormone modulators. Validation of the predictor was performed on independent toxicogenomic data (TG-GATEs, Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System, Osaka, Japan). To build our model we performed Random Forests together with a recursive elimination algorithm (VarSelRF). Gene set enrichment analysis was employed for functional interpretation. A total of 770 microarrays comprising 96 different compounds were analyzed and a predictor of 54 genes was built. Prediction accuracy was 0.85 in the training set, 0.87 in the test set and increased with increasing concentration in the validation set: 0.6 at low dose, 0.7 at medium doses and 0.81 at high doses. Pathway analysis revealed gene prominence of cellular respiration, energy production and lipoprotein metabolism. The biggest target of toxicogenomics is accurately predict the toxicity of unknown drugs. In this analysis, we presented a classifier that can predict non-genotoxic carcinogenicity by using short term exposure assays. In this approach, dose level is critical when evaluating chemicals at early time points.

Spatial heterogeneity in macroinvertebrate density from Lake Hövsgöl, Mongolia

  • Hayford, Barbara;Goulden, Clyde;Boldgiv, Bazartseren
    • Journal of Species Research
    • /
    • v.2 no.2
    • /
    • pp.159-166
    • /
    • 2013
  • Typical of large, oligotrophic lakes, Lake H$\ddot{o}$vsg$\ddot{o}$l, Mongolia, exhibits complex morphometry which should support a spatially heterogeneous community of benthic macroinvertrates. The lake also exhibits a broad range of land uses. Based on the variation in land use and complex physical habitat of the lake (e.g. substrate variation and presence of affluent streams in bays), we asked two questions. First, does density of total benthic macroinvertebrates vary between different bays in Lake H$\ddot{o}$vsg$\ddot{o}$l? Second, does density of individual benthic taxa vary by bay? Samples collected in 1997, the last year for benthic sampling of the lake, were designed to test for variation in macroinvertebrate density between bays and can now be used to establish baseline variation in density for future studies. A total of 56 Ponar grab samples were analyzed from six bays in Lake H$\ddot{o}$vsg$\ddot{o}$l. Results of a general linear model analysis of variance showed that total density of macroinvertebrates varied only slightly between bays of the lake, but that most individual taxa showed significant variation between bays. Variation in density for most taxa was linked to substrate composition rather than other geographic or physical variables in the lake. Recent increases in grazing intensity and ecotourism along the shores should be managed to reduce the nutrient load into the lake to avoid impairment of the benthic biota of this unique, ancient ecosystem.

Micromorphology and development of the epicuticular structure on the epidermal cell of ginseng leaves

  • Lee, Kyounghwan;Nah, Seung-Yeol;Kim, Eun-Soo
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.135-140
    • /
    • 2015
  • Background: A leaf cuticle has different structures and functions as a barrier to water loss and as protection from various environmental stressors. Methods: Leaves of Panax ginseng were examined by scanning electron microscopy and transmission electron microscopy to investigate the characteristics and development of the epicuticular structure. Results: Along the epidermal wall surface, the uniformly protuberant fine structure was on the adaxial surface of the cuticle. This epicuticular structure was highly wrinkled and radially extended to the marginal region of epidermal cells. The cuticle at the protuberant positions maintained the same thickness. The density of the wall matrix under the structures was also similar to that of the other wall region. By contrast, none of this structure was distributed on the abaxial surface, except in the region of the stoma. During the early developmental phase of the epicuticular structure, small vesicles appeared on wallecuticle interface in the peripheral wall of epidermal cells. Some electron-opaque vesicles adjacent to the cuticle were fused and formed the cuticle layer, whereas electron-translucent vesicles contacted each other and progressively increased in size within the epidermal wall. Conclusion: The outwardly projected cuticle and epidermal cell wall (i.e., an epicuticular wrinkle) acts as a major barrier to block out sunlight in ginseng leaves. The small vesicles in the peripheral region of epidermal cells may suppress the cuticle and parts of epidermal wall, push it upward, and consequently contribute to the formation of the epicuticular structure.

Changes of Gene Expression in NIH3T3 Cells Exposed to Osmotic and Oxidative Stresses

  • Lee, Jae-Seon;Jung, Ji-Hun;Kim, Tae-Hyung;Seo, Jeong-Sun
    • Genomics & Informatics
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 2004
  • Cells consistently face stressful conditions, which cause them to modulate a variety of intracellular processes and adapt to these environmental changes via regulation of gene expression. Hyperosmotic and oxidative stresses are significant stressors that induce cellular damage, and finally cell death. In this study, oligonucleotide microarrays were employed to investigate mRNA level changes in cells exposed to hyperosmotic or oxidative conditions. In addition, since heat shock protein 70 (HSP70) is one of the most inducible stress proteins and plays pivotal role to protect cells against stressful condition, we performed microarray analysis in HSP70-overexpressing cells to identify the genes expressed in a HSP70-dependent manner. Under hyperosmotic or oxidative stress conditions, a variety of genes showed altered expression. Down­regulation of protein phosphatase1 beta (PP1 beta) and sphingosine-1-phosphate phosphatase 1 (SPPase1) was detected in both stress conditions. Microarray analysis of HSP70-overexpressing cells demonstrated that diverse mRNA species depend on the level of cellular HSP70. Genes encoding Iysyl oxidase, thrombospondin 1, and procollagen displayed altered expression in all tested conditions. The results of this study will be useful to construct networks of stress response genes.

Musculoskeletal Disorder Symptom Features and Control Strategies in Hospital Workers (병원근로자의 근골격계질환 증상 특성 및 관리방안)

  • Park, Jung-Keun;Kim, Day-Sung;Seo, Kyung-Beom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.81-92
    • /
    • 2008
  • Musculoskeletal disorder (MSD) problems have been increasingly reported in hospital sector but the problems were not addressed with respect to holistic aspects of the target population in Korea. Often, it is required to understand how MSD symptoms are associated with factors such as personal, work environmental and psychosocial stressors. To examine features of association between sets of MSD symptoms and the factors, a questionnaire survey was conducted in a university hospital. A 140-item questionnaire was developed and used for collecting information including factors (e.g., job/occupation, task/activity, job stress) and MSD symptoms. A total of 1,091 workers (male 23.7% and female 76.3%) were finally determined for data analyses. Prevalence rate for the whole body was 72% and, among body parts, the highest was 48.7% for the shoulder, followed by 34.6%(the low back), 32.7%(the leg/foot), 27.9%(the neck), 26.7%(the wrist) and 12%(the elbow). The symptoms were significantly different by job/occupational variable in each of all body parts except the neck. The symptoms were very significantly different by task/activity variables in each of all body parts while those symptoms were significantly different by psychosocial variables, depending on body part and gender. In the logistic regression analyses performed for MSD symptoms by body part and each of 3 factors, odds ratio values varied, ranging from 0.7 to 3.3. The controls for reducing the symptoms were discussed on the basis of the findings. The results show that the MSD symptoms can remarkably vary by the factors and, in particular, can be highly differential for the task/activity factor. This study suggests that MSD symptom features be examined by using various factors and then a higher differential factor be primarily utilized for controling MSD symptoms in general industry including hospital settings.

Correlation of Occupational Stress Index with 24-hour Urine Cortisol and Serum DHEA Sulfate among City Bus Drivers: A Cross-sectional Study

  • Du, Chung-Li;Lin, Mia Chihya;Lu, Luo;Tai, John Jen
    • Safety and Health at Work
    • /
    • v.2 no.2
    • /
    • pp.169-175
    • /
    • 2011
  • Objectives: The questionnaire of occupational stress index (OSI) has been popular in the workplace, and it has been tailored for bus drivers in Taiwan. Nevertheless, its outcomes for participants are based on self-evaluations, thus validation by their physiological stress biomarker is warranted and this is the main goal of this study. Methods: A cross-sectional study of sixty-three city bus drivers and fifty-four supporting staffs for comparison was conducted. Questionnaire surveys, 24-hour urine cortisol testing, and blood draws for dehydroepiandrosterone-sulfate (DHEA-S) testing were performed. The measured concentrations of these biological measures were logarithmically transformed before the statistical analysis where various scores of stressor factors, moderators, and stress effects of each OSI domain were analyzed by applying multiple linear regression models. Results: For drivers, the elevated 24-hour urine cortisol level was associated with a worker's relationship with their supervisor and any life change events in the most recent 3 months. The DHEA-S level was higher in drivers of younger age as well as drivers with more concerns relating to their salary and bonuses. Non-drivers showed no association between any stressor or satisfaction and urine cortisol and blood DHEA-S levels. Conclusion: Measurements of biomarkers may offer additional stress evaluations with OSI questionnaires for bus drivers. Increased DHEA-S and cortisol levels may result from stressors like income security. Prevention efforts towards occupational stress and life events and health promotional efforts for aged driver were important anti-stress remedies.

Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals

  • Patra, Amlan Kumar;Kar, Indrajit
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.211-247
    • /
    • 2021
  • Livestock species experience several stresses, particularly weaning, transportation, overproduction, crowding, temperature, and diseases in their life. Heat stress (HS) is one of the most stressors, which is encountered in livestock production systems throughout the world, especially in the tropical regions and is likely to be intensified due to global rise in environmental temperature. The gut has emerged as one of the major target organs affected by HS. The alpha- and beta-diversity of gut microbiota composition are altered due to heat exposure to animals with greater colonization of pathogenic microbiota groups. HS also induces several changes in the gut including damages of microstructures of the mucosal epithelia, increased oxidative insults, reduced immunity, and increased permeability of the gut to toxins and pathogens. Vulnerability of the intestinal barrier integrity leads to invasion of pathogenic microbes and translocation of antigens to the blood circulations, which ultimately may cause systematic inflammations and immune responses. Moreover, digestion of nutrients in the guts may be impaired due to reduced enzymatic activity in the digesta, reduced surface areas for absorption and injury to the mucosal structure and altered expressions of the nutrient transport proteins and genes. The systematic hormonal changes due to HS along with alterations in immune and inflammatory responses often cause reduced feed intake and production performance in livestock and poultry. The altered microbiome likely orchestrates to the hosts for various relevant biological phenomena occurring in the body, but the exact mechanisms how functional communications occur between the microbiota and HS responses are yet to be elucidated. This review aims to discuss the effects of HS on microbiota composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity, and barrier integrity in the gut, and production performance of farm animals along with the dietary ameliorations of HS. Also, this review attempts to explain the mechanisms how these biological responses are affected by HS.