• Title/Summary/Keyword: Environmental stress

Search Result 4,010, Processing Time 0.03 seconds

Thermal and Organic Chemical Stress Responsive Genes in Soft Coral, Scleronephthya gracillimum

  • Woo, Seon-Ock;Yum, Seung-Shic;Kim, Yong-Tae;Suh, Seung-Jik;Kim, Hack-Cheul;Lee, Jong-Rak;Kim, Sa-Heung;Lee, Taek-Kyun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.170-175
    • /
    • 2006
  • The extensive isolation of genes responsive to stressful conditions from a soft coral Scleronephthya gracillimum was described. Soft coral colonies were exposed to thermal and chemical stressors to induce the expression of stress related genes. Differentially expressed genes by natural or anthropogenic stressors were identified by construction of standard and stress exposed-paired subtractive cDNA library. Thirty-two and thirty-seven kinds of candidate genes were identified from thermal or benzo[a]pyrene stress exposed group, respectively, which are associated with cell cycle, cell signaling, transcription, translation, protein metabolism, and other cellular functions. The expected function of each gene was described. The isolated and identified differentially expressed genes have a great potential to identify environmental stressors in global environmental changes and could act as molecular biomarkers for biological responses against environmental changes. Finally, it may open a new paradigm on soft coral health assessment.

A Study on the Effects of Heat Stress on Feedlot Environment and Productivity of Dairy Cattle (고온 환경이 젖소의 생산성 및 축사환경에 미치는 영향 연구)

  • Kim, Byul;Lim, Joung-Soo;Cho, Sung-Back;Hwang, Ok-Hwa;Yang, Seung-Hak
    • Journal of Animal Environmental Science
    • /
    • v.20 no.2
    • /
    • pp.63-68
    • /
    • 2014
  • Environmental heat stress by global warming has a severe effect on the productivity of livestock and, in particular, on that of dairy cattle. Heat stress during high temperature environment directly and indirectly affects milk yield, milk quality and physiological response. This study was conducted to investigate the effects of heat stress on productivity and physiological responses of livestock. Temperature-humidity data logger were established inside the feedlot for measuring real time changes in the feedlot environment. Milk was collected every day for analysing the productivity of dairy cattle. Blood sample and respiration of dairy cattle were collected once in a week for investigating the physiological response factors. Blood component concentration associated with lipolysis metabolism and milk production showed change during tropical night period. Temperature humidity index (THI) of a specific location inside the feedlot showed continuously high levels.

An Experimental Study on the Reinforcement and Stabilization of Slope by Vegetation Roots (식생뿌리에 의한 비탈면 안정과 보강에 관한 실험적 연구)

  • Cho, Ju-Hyoung;Ahn, Bong-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.1 no.1
    • /
    • pp.54-62
    • /
    • 1998
  • This study measured the shearing resistance of the roots of the Sasamorpha purpurascens, Miscanthus sinensis, Lespedeza cyrtobotrya by the tensile strength gained through their individual tensile test for the Root Reinforcement Model. The results to have measured this stress by experiment are as follows. 1) The mean root diameter of the Lespedeza cyrtobotrya used for this experiment was 2.19mm and the mean tensile stress was calculated as $929.489kgf/cm^2$. As for the Sasamorpha purpurascens, its mean root diameter was 1.727mm, and the mean tensile stress was $292.069kgf/cm^2$. And as for the Miscanthus sinensis, its mean root diameter was 0.814mm, and the mean tensile stress was $696.947kgf/cm^2$. And so, it was grasped that Lespedeza cyrtobotrya was highest in tensile stress. 2) ${\Delta}Cr(kg/cm^2)$ of the shearing resistance calculated by estimating the areal ratio of roots at $10^{-3}$ is $1.069kg/cm^2$ in Lespedeza cyrtobotrya, $0.336kg/cm^2$ in Sasamorpha purpurascens, and $0.801kg/cm^2$ in Miscanthus sinensis. That is, Lespedeza cyrtobotrya has the highest shearing resistance. However, since a precise analysis of the controlled factors of the slope analyses are demanded for more accurate dynamic analyses, the future demands a study on this.

  • PDF

Changes in Urinary MDA and 8-OHdG Concentrations due to Wearing Personal Protective Equipment and Performing Protective Behaviors among Agricultural Workers in Korea (우리나라 일부 농업 종사자의 개인보호구 착용, 작업위생행위에 따른 소변 중 MDA, 8-OHdG 농도 변화)

  • Lee, Jiyun;Ji, Kyunghee;Kim, Bokyung;Park, Seokhwan;Kim, Pan-Gyi
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.6
    • /
    • pp.467-477
    • /
    • 2017
  • Objectives: Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. We investigated whether protective measures could significantly reduce the levels of biomarkers for oxidative stress and DNA damage in agricultural workers. Methods: In the present study, the levels of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), biomarkers related to oxidative stress and DNA damage, respectively, were analyzed in urine samples collected from agricultural workers in two provinces of Korea (n=60). The influence of wearing personal protective equipment (PPE) and performing protective behaviors on the levels of these two biomarkers was also evaluated. Results: The median urinary levels of MDA and 8-OHdG were 10.45 nmol/mg creatinine and 14.42 ng/mg creatinine in subjects living in region A, while they were 6.25 nmol/mg creatinine and 24.77 ng/mg creatinine in subjects living in region B, respectively. The levels of MDA and 8-OHdG were higher in male farmers. Farmers wearing greater numbers of PPE and performing more protective behaviors had significantly lower levels of MDA. Greater numbers of protective behaviors was significantly associated with lower levels of 8-OHdG. Conclusion: The results of the present study indicate that pesticide exposure could induce oxidative stress and DNA damage in agricultural workers, and that protective measures are important for mitigating pesticide exposure.

Variations of glucosinolates in kale leaves (Brassica oleracea var. acephala) treated with drought-stress in autumn and spring seasons (수분스트레스에 의한 케일 내 글루코시놀레이트 변화)

  • Jeong, Na-Rae;Chun, Jin-Hyuk;Park, Eun-Jae;Lim, Ye-Hoon;Kim, Sun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.167-175
    • /
    • 2015
  • The present study aimed to investigate the effects of drought stress on the accumulation of glucosinolates (GSLs) in the leaves of Kale cultivated in autumn and spring. HPLC analysis guided to identify seven GSLs including progoitrin, glucoraphanin, sinigrin, gluconapin, glucobrassicin, 4-methoxyglucobrassicin and neoglucobrasscin. Quantification of GSLs revealed that the contents of sigirin was the highest (45%) followed by the level of progoitrin (24%) in terms of total GSLs. The ranges of total GSL contents was 1.16 (84)-15.88 (89 DAS, ${\mu}mol/g$ dry wt. (DW)) in treatment plot and 1.23 (84)-7.05 (74 DAS, ${\mu}mol/g$ dry wt.) in control plot showed the enhancement in the contents of GSLs in treatment than in the control plot. The present results evidenced that the variation of total GSL contents were depending on the harvest period. In 105 DAS, comparatively no differences in the GSL contents on each sample in autumn season, whereas in spring season, although there was decrease in the GSLs tendency from 74 DAS to 84 DAS in both control and treatment plot, the GSL contents of treatment plot was dramatically increased in 89 DAS. In treatment plot, the GSL contents on 89 DAS (1.16) was 15 fold higher to 84 DAS ($15.88{\mu}mol/g$ DW). The variation in the contents of GSL in spring and autumn did not documented significant differences because of their differences in the growth time and cultivation conditions. In conclusion, the GSL contents in kale was likely to be affected by drought stress treatment. Scrutiny and further research for exact relation between drought stress and GSL contents in kale should be needed.

Molecular Characterization of FprB (Ferredoxin-$NADP^+$ Reductase) in Pseudomonas putida KT2440

  • Lee, Yun-Ho;Yeom, Jin-Ki;Kang, Yoon-Suk;Kim, Ju-Hyun;Sung, Jung-Suk;Jeon, Che-Ok;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1504-1512
    • /
    • 2007
  • The fpr gene, which encodes a ferredoxin-$NADP^+$ reductase, is known to participate in the reversible redox reactions between $NADP^+$/NADPH and electron carriers, such as ferredoxin or flavodoxin. The role of Fpr and its regulatory protein, FinR, in Pseudomonas putida KT2440 on the oxidative and osmotic stress responses has already been characterized [Lee at al. (2006). Biochem. Biophys. Res. Commun. 339, 1246-1254]. In the genome of P. putida KT2440, another Fpr homolog (FprB) has a 35.3% amino acid identity with Fpr. The fprB gene was cloned and expressed in Escherichia coli. The diaphorase activity assay was conducted using purified FprB to identify the function of FprB. In contrast to the fpr gene, the induction of fprB was not affected by oxidative stress agents, such as paraquat, menadione, $H_2O_2$, and t-butyl hydroperoxide. However, a higher level of fprB induction was observed under osmotic stress. Targeted disruption of fprB by homologous recombination resulted in a growth defect under high osmotic conditions. Recovery of oxidatively damaged aconitase activity was faster for the fprB mutant than for the fpr mutant, yet still slower than that for the wild type. Therefore, these data suggest that the catalytic function of FprB may have evolved to augment the function of Fpr in P. putida KT2440.

Inhibition of Seed Germination and Induction of Systemic Disease Resistance by Pseudomonas chlororaphis O6 Requires Phenazine Production Regulated by the Global Regulator, GacS

  • Kang, Beom-Ryong;Han, Song-Hee;Zdor, Rob E.;Anderson, Anne J.;Spencer, Matt;Yang, Kwang-Yeol;Kim, Yong-Hwan;Lee, Myung-Chul;Cho, Baik-Ho;Kim, Young-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.586-593
    • /
    • 2007
  • Seed coating by a phenazine-producing bacterium, Pseudomonas chlororaphis O6, induced dose-dependent inhibition of germination in wheat and barley seeds, but did not inhibit germination of rice or cucumber seeds. In wheat seedlings grown from inoculated seeds, phenazine production levels near the seed were higher than in the roots. Deletion of the gacS gene reduced transcription from the genes required for phenazine synthesis, the regulatory phzI gene and the biosynthetic phzA gene. The inhibition of seed germination and the induction of systemic disease resistance against a bacterial soft-rot pathogen, Erwinia carotovora subsp. carotovora, were impaired in the gacS and phzA mutants of P chlororaphis O6. Culture filtrates of the gacS and phzA mutants of P. chlororaphis O6 did not inhibit seed germination of wheat, whereas that of the wild-type was inhibitory. Our results showed that the production of phenazines by P. chlororaphis O6 was correlated with reduced germination of barley and wheat seeds, and the level of systemic resistance in tobacco against E. carotovora.

Effects of acute dibutyl phthalate administration on hepatic lipid peroxidation and gamma-glutamyl transferase activity in mice (마우스에서 dibutyl phthalate 급성 투여가 간 지질과산화와 gamma-glutamyl transferase 활성에 미치는 효과)

  • 최달웅;김영환
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2004
  • Dibutyl phthalate (DBP) is used extensively in the plastic industry and has been known as an endocrine disruptor. Present study was undertaken to examine whether DBP can induce oxidative stress in mice. In this study, oxidative stress was measured in terms of the modification of lipid peroxidation and gamma-glutamyl transferase (GGT) activity. The serum toxicity index, level of lipid peroxidation and triglyceride (TG), and activity of GGT were measured in male ICR mice after a single administration of DBP (5 g/kg, po). DBP did not alter serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, glucose and cholesterol level. However, the treatment with DBP was found to significantly increase the level of lipid peroxidation in liver and lung. The TG content and activity of GGT in the liver of DBP-exposed animals was also increased. These results indicate that DBP can induce mild oxidative stress in mice. The GGT activity is considered to be increased as one of the adaptive defense mechanisms to oxidative stress induced by DBP.

환경 스트레스, 활성산소와 스트레스-에틸렌 간의 상호관계

  • 이호준;오승은
    • The Korean Journal of Ecology
    • /
    • v.17 no.1
    • /
    • pp.91-100
    • /
    • 1994
  • Although the types of stress are various, environmental stresses generally increase the amounts of reactive oxygen species in plants. These reactive oxygen species stimulate stress-ethylene synthesis and accelerate senescence of plants. However, when stress-ethylene synthesis is suppressed through antioxidative enzymes and antioxidants, the resistance of plants against stress could be induced by limited production of ethylene.

  • PDF

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.