• Title/Summary/Keyword: Environmental stability

Search Result 2,733, Processing Time 0.028 seconds

Modeling Study for Effects of Hydrothermal Clay Vein on Slope Stability (열수변질 점토맥이 사면 안정성에 미치는 영향에 관한 모델링 연구)

  • Jo, Hwan-Ju;Jo, Ho-Young;Jeong, Kyung-Mun
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.185-196
    • /
    • 2010
  • Clay veins that occurred in a slope by hydrothermal alteration, can significantly affect its slope stability. The effect of clay veins on the slope stability was investigated by numerical modeling study. Various parameters such as cohesion, internal friction angle, orientation, groundwater level, rainfall intensity and duration, have been modelled. As shear strength increased, factor of safety increased. As groundwater level developed, factor of safety decreased. For the case of slip surface developed on interface, factor of safety was lower than that for case of slip surface developed on either weathered soil or clay vein. The effect of various soil types of the slope stability was also investigated by simulating seepage through the slopes with various soils. The groundwater level significantly increased on the slopes with silty and generic soils. For the slope with sandy soil, almost no change in groundwater level was observed due to rapid drainage.

Projection of the Climate Change Effects on the Vertical Thermal Structure of Juam Reservoir (기후변화가 주암호 수온성층구조에 미치는 영향 예측)

  • Yoon, Sung Wan;Park, Gwan Yeong;Chung, Se Woong;Kang, Boo Sik
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.491-502
    • /
    • 2014
  • As meteorology is the driving force for lake thermodynamics and mixing processes, the effects of climate change on the physical limnology and associated ecosystem are emerging issues. The potential impacts of climate change on the physical features of a reservoir include the heat budget and thermodynamic balance across the air-water interface, formation and stability of the thermal stratification, and the timing of turn over. In addition, the changed physical processes may result in alteration of materials and energy flow because the biogeochemical processes of a stratified waterbody is strongly associated with the thermal stability. In this study, a novel modeling framework that consists of an artificial neural network (ANN), a watershed model (SWAT), a reservoir operation model(HEC-ResSim) and a hydrodynamic and water quality model (CE-QUAL-W2) is developed for projecting the effects of climate change on the reservoir water temperature and thermal stability. The results showed that increasing air temperature will cause higher epilimnion temperatures, earlier and more persistent thermal stratification, and increased thermal stability in the future. The Schmidt stability index used to evaluate the stratification strength showed tendency to increase, implying that the climate change may have considerable impacts on the water quality and ecosystem through changing the vertical mixing characteristics of the reservoir.

Ambient Levels of CO and PM10 at Low- and High-floor Apartments in Industrial Complexes (산업단지 내 저층과 고층 아파트의 외기 중 호흡성분진과 일산화탄소 수준)

  • Jo, Wan-Kuen;Lee, Joon-Yeob
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.719-725
    • /
    • 2006
  • Since low-floor apartments ate vertically closer to patting lots and roadways, it is hypothesized that residents in low-floor apartments may be exposed to elevated ambient levels of motet vehicle emissions compared to residents in high-floor apartments. The present study examined this hypothesis by measuring two motor vehicle source-related pollutants(CO and PM10) in ambient air of high-rise apartment buildings within the boundary of industrial complexes according to atmospheric stability The ambient air concentrations of CO and PM10 were higher for low-floor apartments than for high-floor apartments, regardless of atmospheric stability, The median concentration ratio of the low-floor air to high-floor alt ranged from 1.3 to 2.0, depending upon atmospheric stabilities, seasons and compounds. Moreover, the CO and PM10 concentrations were significantly higher in the winter and in the summer, regardless of the Hoot height. Atmospheric stability also was suggested to be important for the residents' exposure of high-rise apartment buildings to both CO and PM10. The median ratios of surface inversion air to non-surface inversion air ranged from 1.2 to 1.7 and from 1.0 to 1.6 lot PM10 and CO, respectively, depending upon seasons. Conclusively, these parameters(apartment floor height, season, and atmospheric stability) should be considered when evaluating the exposure of residents, living in high-rise apartment buildings, to CO and PM10. Meanwhile, the median PMl0 outdoor concentrations were close to or higher than the Korean annual standards for PM10, and the maximum PM10 concentrations substantially exceeded the Korean PM10 standard, thus suggesting the need for a management strategy for ambient PM 10. Neither the median nor the maximum outdoor CO concentrations, however, were higher than the Korean CO standard.

Development of Methyl 2-aminobenzoate Reference Material in a Biocidal Product Matrix

  • So Yeon Lee;Kyungmin Kim;Junghyun Kim;Wooil Kim;Han Bin Oh
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.166-172
    • /
    • 2023
  • The utilization of methyl 2-aminobenzoate as a biocide and pesticide has raised concerns regarding its potential toxicity. To assess its safety, it is crucial to determine its quantity and related toxicity using reference materials (RMs) or certified reference materials (CRMs). As an RM and CRM containing methyl 2-aminobenzoate within a biocidal product matrix is currently unavailable, this study aimed to produce a high-quality RM containing methyl 2-aminobenzoate, ensuring its homogeneity and stability, following the ISO Guide 35 and ISO 17034. The study determined that the produced RM exhibited homogeneity, as indicated by a calculated F-value (1.91) smaller than the critical F-value (3.02). In the assessment of isochronous short-term stability, the slope of the linear regression for the RM showed no statistically significant difference from zero when stored at temperatures of 4, 18, and 60 ℃ for 4 weeks. Regarding classical long-term stability, the RM demonstrated sustained stability over the course of one year when stored at 4 ℃. This study has successfully developed an RM for monitoring methyl 2-aminobenzoate in biocides and pesticides. Its quality underwent rigorous evaluation, confirming both homogeneity and stability.

Synthesis of New N2O2 Tetradentate Ligands and Determination of Stability Constants of Metal Complexes for Removal of Heavy Metals (중금속 이온 분리를 위한 새로운 네 자리 N2O2계 리간드의 합성 및 착 화합물의 안정도상수 결정)

  • Kim, Sun-Deuk;Kim, Jun-Kwang;Lee, Kyung-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.913-920
    • /
    • 2007
  • Hydrochloride acid salts of new $N_2O_2$ tetradentate ligands containing amine and phenol N,N'-bis(2-hydroxybenzyl)-o-phenylenediamine(H-BHP), N,N'-bis(5-bromo-2-hydroxybenzyl)-o-phenylenediamine(Br-BHP), N,N'-bis(5-chloro-2-hydroxybenzyl)-o-phenylene-diamine(Cl-BHP), N,N'-bis(5-methyl-2-hydroxybenzyl)-o-phenylene-diamine (Me-BHP) and N,N'-bis(5-methoxy-2-hydroxybenzyl)-o-phenylenediamine(MeO-BHP) were synthesized. The ligands were characterized by elemental analysis, mass and NMR spectroscopy. The elemental analysis showed that the ligands were isolated as dihydrochloride salt. The potentiometry study revealed that the proton dissociation constants$(logK_n{^H})$ of ligands and stability constants $(logK_{ML})$ of transition and heavy metals complexes. The order of the stability constants of each metal ions for ligands was Br-BHP < Cl-BHP > H-BHP < MeO-BHP < Me-BHP.

Effects of Atmospheric Stability and Surface Temperature on Microscale Local Airflow in a Hydrological Suburban Area (대기 안정도와 지표면 온도가 미세규모 국지 흐름에 미치는 영향: 수문지역을 대상으로)

  • Park, Soo-Jin;Kim, Do-Yong;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • In this study, the effects of atmospheric stability and surface temperature on the microscale local airflow are investigated in a hydrological suburban area using a computational fluid dynamics (CFD) model. The model domain includes the river and industrial complex for analyzing the effect of water system and topography on local airflow. The surface boundary condition is constructed using a geographic information system (GIS) data in order to more accurately build topography and buildings. In the control experiment, it is shown that the topography and buildings mainly determine the microscale airflow (wind speed and wind direction). The sensitivity experiments of atmospheric stability (neutral, stable, and unstable conditions) represent the slight changes in wind speed with the increase in vertical temperature gradient. The differential heating of ground and water surfaces influences on the local meteorological factors such as air temperature, heat flow, and airflow. These results consequentially suggest that the meteorological impact assessment is accompanied by the changes of background land and atmospheric conditions. It is also demonstrated that the numerical experiments with very high spatial resolution can be useful for understanding microscale local meteorology.

Trends of Stability Indices and Environmental Parameters Derived from the Rawinsonde Data over South Korea

  • Eom, Hyo-Sik;Suh, Myoung-Seok
    • Journal of the Korean earth science society
    • /
    • v.32 no.5
    • /
    • pp.461-473
    • /
    • 2011
  • In this paper, trends of the widely used stability indices (SIs) and environmental parameters (EPs) were examined by using the 30-year routine rawinsonde data observed in three upper air observatories (Osan, Gwangju and Pohang) over South Korea. To take into account of the contribution of water vapor to a parcel density, we applied the virtual temperature correction in calculating the SIs and EPs. The trends of SIs and EPs indicated significant increases of temperature and moisture contents, especially at the low-to-mid troposphere during the last 10 years. The warming trend in the lower troposphere shows about 3 times greater than that of the global average (+0.10- $+0.20^{\circ}C$/10 years), whereas the cooling trend of lower stratosphere demonstrates a similar trend with the global average (-0.33- $-0.60^{\circ}C$/10 years). The vertical stability is clearly reduced due to the unsymmetrical change of atmospheric elements. The unstabilizing trend with the increased moisture contents gradually changed the atmospheric environment in South Korea into the conditions favorable for the occurrence of severe weather or intensifications of such events. These trends are consistent with the recent observations, which showed clear increase in the intensity and frequency of heavy rainfalls.

Improvement of the Environmental Conservation Value Assessment Map (ECVAM) by Complement of the Vegetation Community Stability Item (식생 군집구조 안정성 평가항목 보완을 통한 국토환경성평가지도 개선방안 연구)

  • Jeon, Seong-Woo;Song, Won-Kyong;Lee, Moung-Jin;Kang, Byung-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.114-123
    • /
    • 2010
  • The Environmental Conservation Value Assessment Map (ECVAM) is a five grade assessment map created with nationally integrated environmental information and environmental values. The map is made through the evaluation of 67 items, including greenbelt area and bio-diversity. The ECVAM assesses the stability of the community using forest maps. However, the existing assessment method is problematic because the assessment grades are evaluated using higher than practical values; in part because it uses even-valued overlay and minimal indicator methods. This study was performed in order to suggest an integrated assessment method that could complement the stability evaluation based on existing methods. Accordingly, this study added forest type information, including whether the forest was natural or artificial, to the overlay method using forest diameter maps and forest density maps. As a result, the proposed ECVAM indicated a drastic grade change. After applying the method in South Korea, Grade I areas decreased 12.1%, from 52.6% to 40.6%, Grade II areas increased 11.9%, from 17.4% to 29.2%, and Grade III areas increased 0.2%, from 17.1% to 17.4%, respectively. From the results of the field survey, we found differences between natural forest and planted forest with regard to the number of mortality, species of shrubs, and vine cover. This means that natural forests are more stable than planted forests. This study suggests an improved assessment methodology to complement the existing EVCAM method. The results are expected to be used in environmental evaluations and forest conservation value assessments in ecology and environmental fields.