• Title/Summary/Keyword: Environmental spore

Search Result 138, Processing Time 0.034 seconds

Morphological Discretion of Basidiospores of the Puftball Mushroom Calostoma by Electron and Atomic Force Microscopy

  • Kim, Mi-Sun;Kim, Ki-Woo;Jung, Hack-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1721-1726
    • /
    • 2007
  • Comparative morphology among species of the genus Calostoma, including C. cinnabarina, C. ravenelii, and C. japonicum, was investigated by scanning electron microscopy and atomic force microscopy. Spore morphology of C. cinnabarina and C. ravenelii showed no dramatic differences by light microcopy and scanning electron microscopy. To differentiate these species, atomic force microscopy was employed. Quantitative analysis of the surface roughness of basidiospores revealed subtle differences in height fluctuation at the nanometer scale between the species of Calostoma. Basidiospores of C. cinnabarina had a relatively rougher surface than those of C. ravenelii at $2.0{\times}2.0\;{\mu}m^2$ scan areas.

Evaluation of Antifungal Activities of Nanoparticles against Cladosporium cladosporioides Spore Bioaerosols (Cladosporium cladosporioides 포자에 대한 나노입자의 항진균 특성 평가)

  • Yun, Sun-Hwa;Bae, Gwi-Nam;Lee, Byung-Uk;Ji, Jun-Ho;Kim, Sun-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.255-263
    • /
    • 2009
  • The antifungal activity of silver, copper, and titania nanoparticles against fungal spores was investigated. Cladosporium cladosporioides spores were aerosolized and sampled on a solid agar plate using an Anderson impactor. The solid agar plate contained different concentration of nanoparticles ranging from 0 to $500{\mu}g/mL$. Silver and copper nanoparticles were shown to be an effective antifungal agent, while titania nanoparticles were not. Antifungal activity of these effective nanoparticles appeared at $300{\mu}g/mL$ concentration.

Determination of Carbon Source Utilization of Bacillus and Pythium Species by Biolog$^{(R)}$ Microplate Assay

  • Chun, Se-Chul;R.W. Schneider;Chung, Ill-Min
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.252-258
    • /
    • 2003
  • The carbon utilizations of Bacillus species and Pythium species were investigated by using a Biolog$^{(R)}$ microplate assay to determine if there are differences in the carbon utilizations of selected strains of these species. It may be possible to afford a competitive advantage to bacterial biological control agents by providing them with a substrate that they can readily use as a carbon source, for example, in a seed coating formulation. Microplates, identified as SFP, SFN and YT were used to identify spore-forming bacteria, nonspore-forming bacteria, and yeast, respectively. Bacterial and mycelial suspensions were adjusted to turbidities of 0.10 to 0.11 at 600 nm. One hundred microliters of each of the bacterial and mycelial suspension were inoculated into each well of each of the three types of microplates. L-arabinose, D-galactose, D-melezitose and D-melibiose of the 147 carbohydrates tested were found to be utilized only by bacteria, and not by Pythium species, by Biolog$^{(R)}$ microplate assay, and this was confirmed by traditional shake flask culture. Thus, it indicated that the Biolog$^{(R)}$ microplate assay could be readily used to search for specific carbon sources that could be utilized to increase the abilities of bacterial biological control agents to adapt to contrived environments.

Holocene Environmental Change and Human Impact in Hoya Rincon de Parangueo, Guanajuato, Mexico

  • Park, Jung-Jae
    • The Korean Journal of Ecology
    • /
    • v.28 no.5
    • /
    • pp.245-254
    • /
    • 2005
  • This paper presents a paleoenvironmental study on Hoya Rincon do Parangueo, a maar lake in Valle de Santiago in Central Mexican Bajio. Maar lake sediments have been widely used for high-resolution reconstruction of paleoenvironment. Many different paleoenvironmental proxy data such as stable isotopes, pollen, sediment chemistry, and dung fungus spore were produced in this study. The pine-oak ratio, stable isotopes, and sediment chemistry help to reveal paleoenviromental changes throughout the whole period covered by sediment materials from this study site. The evidence I found indicates that during ca. 9,500 $\sim$ ca. 8,300 cal yr B.P. there was dry climate; during ca. 8,300 $\sim$ ca. 6,300 cal yr B.P. it was wetter; during ca. 6,300 $\sim$ ca. 4,000 cal yr B.P. drier and cooler; during ca. 4,000 $\sim$ ca. 1,100 cal yr B.P. milder and wetter. The presence of Chupicuaro culture between ca. 2,500 $\sim$ 1,100 cal yr B.P. is implied by the high frequencies of Amaranthaceae and Zea mars. It seems that man left this lake around 1,100 cal yr B.P. due to a dry climate after 1,300 cal yr B.P. Spanish arrival around 400 cal yr B.P. is implied by the fact that fe3 mars reappears and Sporormiella spp. become significant around 120 cm, whereas Poaceae drops sharply.

Effect of Functionally-strengthened Fertilizers on Garlic Growth and Soil Properties

  • Li, Jun-Xi;Wee, Chi-Do;Sohn, Bo-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.308-315
    • /
    • 2011
  • Ammonium- and potassium-loaded zeolite (NK-Z) and other four kinds of environmental friendly fertilizers/agents were applied to characterize their effectiveness on garlic (Allium sativum L.) growth and soil amelioration. Selenium dioxide ($SeO_2$) and germanium dioxide ($GeO_2$) liquid treatments significantly increased selenium (Se) and germanium (Ge) contents in garlic stems, garlic cloves and clove peels. In soil treated with ZBFC, Se contents in garlic stems, cloves, and clove peels was 13.89-, 12.79-, and 10.96-fold higher, respectively, than in the controls. The inorganic contents of plants grown in soil treated with functional strengthened fertilizers were also higher than in plants grown in control soil. Soil treated with arbuscular mycorrhizal fungi (AMF) agents exhibited significantly greater spore density and root colonization rate than in untreated soil. The density of chitinolytic microorganisms in soil treated with colloidal chitin was also significantly higher than in untreated soil. The cation exchange capacities (CEC) in ZAFC-, ZBFC-, and ZBF-treated soils was 16.05%, 8.95%, and 8.80% higher than in control soil 28 weeks after sowing.

Complete genome sequence of Paenibacillus swuensis DY6T, a bacterium isolated from gamma-ray irradiated soil (감마선 조사된 토양에서 분리된 박테리아 Paenibacillus swuensis DY6T의 완전한 게놈 서열)

  • Kim, Myung Kyum;Lee, Seung-Yeol;Jung, Hee-Young;Srinivasan, Sathiyaraj
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.500-502
    • /
    • 2016
  • Several bacterial species have been reported to be surviving after the ionizing radiation treatment due to the presence of sophisticated enzymes systems and some endospores producing bacterial strains can also resist, due to the presence of thick spore coat. In this study, we report the complete genome sequence of a bacterium Paenibacillus swuensis $DY6^T$, isolated from an irradiated soil sample. The genome comprised of 5,012,599 bp with the G+C content of 49.93%, the genome included 4,463 protein coding genes and 133 RNA genes.

Factors Affecting Appressorium Formation in the Rice Blast Fungus Magnaporthe grisea (벼 도열병균의 부차기 형성에 미치는 요인 분석)

  • 이승철;강신호;이용환
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.413-417
    • /
    • 1998
  • Magnaporthe grisea, the casual agent of rice blast, requires formation of an appressorium, a dome-shaped and well melanized infection structure, to penetrate its host. Environmental cues that induce appressorium formation include hydrophobicity and hardness of contact surface and chemicals from its host. Artificial surfaces are widely used to induce appressorium formation, but frequencies of appressorium induction are not always consistent. To understand variable induction of appressorium formation in M. grisea, several factors were tested on GelBond. High levels of appressorium formation were induced over a wide range of temperature (20~3$0^{\circ}C$) and pH (4~7). spore age up to 3-week-old did not significantly affect appressorium formation, but only a few apressoria on GelBond. However, adenosine specifically inhibited appressorium formation. Adenosine inhibition of appressorium formation was restored by exogenous addition of cAMP. Germ tube tips of M. grisea maintained the ability to differentiate appressoria by chemical inducers on GelBond at least up to 16 h after conidia germination. These results suggest that environmental factors have little effect on the variable induction of appressorium formation on the artificial surface in M. grisea.

  • PDF

Direct and Indirect Membrane Integrity Tests for Monitoring Microbial Removal by Microfiltration (정밀여과(MF)막 미생물 제거율 모니터링을 위한 막 완전성시험)

  • Hong, Seungkwan;Miller, Frank;Taylor, James
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.801-806
    • /
    • 2004
  • The pilot study was conducted to (i) investigate the ability of various membrane integrity monitoring methods to detect changes in membrane integrity during operation, and (ii) determine the impact of membrane damage on microbial removal by microfiltration. Two variations of air pressure hold tests were investigated for direct integrity monitoring: pressure decay (PD) and diffusive air flow (DAF) tests which are most commonly used integrity tests for microfiltration (MF) membranes. Both PD and DAF tests were sensitive enough to detect one damaged fiber out of 66,000 under field operaing conditions. Indirect integrity monitoring such as turbidity and particle counting, however, responded poorly to defects in membrane systems. Microbial challenge study was performed using both new and deliberately damaged membranes, as well as varying the state of fouling of the membrane. This study demonstrated that MF membrane with nominal pore size $0.2{\mu}m$ was capable of removing various pathogens including coliform, spore, and cryptosporidium, at the level required by drinking water regulations, even when high operating pressures were applied. A sharp decrease in average log reduction value (LRV) was observed when one fiber was damaged, emphasizing the importance of membrane integrity in control of microbial contamination.

Study of Cytotoxicity of an Actinomycete Isolated in Korea (토양에서 분리한 방선균의 세포 독성에 관한 연구)

  • Park, Joon-Koo;Choi, Boung-Don;Kim, Seung-Chul;Ryeom, Kon
    • Environmental Analysis Health and Toxicology
    • /
    • v.8 no.3_4
    • /
    • pp.7-12
    • /
    • 1993
  • An Actinomycete strain isolated from Mt. Dea-Dun had a strong antifungal activity. The culture brith produced by isolated strain showed only antifungal activity against fungi with the exception of yeast and bacteria. It was heat stable, dissolved in ehtylacetate. The concentrated antifungal agent showed cytotoxicity against HEP-2 and HeLa as tumor cell line, and showed weak cytotoxicity against VERO 36 as normal cell line. Morphological and physiological characteristics were tested with isolated strain. The spore color of isolated strain was gray. It had a short chain and produced brown colored lytic substance in yeast extract-malt agar. The cell wall of isolated strain was composed of meso-DAP, and we suggested it as genus Actinomadura. In the existing of chemical inhibitor, isolated strain grew on the condition of 0.0001% crystal violet, 0.1% phenol, 0.01% sodium azide and 10% sodium chloride. Carbon utilization of isolated strain was shown that glucose, sucrose, manitol and sodium citrate were well utilized.

  • PDF

Strength and Healing Performance of the Mortar using Bacterial Pellet as a Self-Healing Material (박테리아 펠렛을 자기치유 소재로 사용한 모르타르의 강도 및 치유성능)

  • Jang, Indong;Son, Dasom;Ryu, Young-ung;Park, Woojun;Yi, Chongku
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.112-119
    • /
    • 2020
  • In this study, cellulose-based bacterial pellets was used for the self-healing concrete manufacturing. The pellet is composed of complex cultured bacterial spore powder, methyl cellulose, two kinds of PVA nutrients and water, and is extruded through a hydraulic press to have a shape of 2mm in diameter to 3 to 4mm in length. Cellulose pellets expand at neutral pH, release bacteria and nutrients, and do not react in a basic environment, increasing the long-term survival rate of bacteria in cement mortar. In addition, pellet self-healing performance of pellet mortar was significantly higher than that of control mortar. Cellulose-based pellets are a new type of bacterial carrier system that will help develop self-healing concrete in the future by improving and optimizing pellets.