• Title/Summary/Keyword: Environmental risk

Search Result 3,986, Processing Time 0.035 seconds

Aquatic Toxicity Assessment of Phosphate Compounds

  • Kim, Eunju;Yoo, Sunkyoung;Ro, Hee-Young;Han, Hye-Jin;Baek, Yong-Wook;Eom, Ig-Chun;Kim, Hyun-Mi;Kim, Pilje;Choi, Kyunghee
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.2.1-2.7
    • /
    • 2013
  • Objectives Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. Methods An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. Results The results of the ecotoxicity tests of tricalcium phosphate and calcium hydrogenorthophosphate are as follows: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration ($LC_{50}$) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration ($EC_{50}$) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr $EC_{50}$ was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. Conclusions Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, $L(E)C_{50}$ was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth.

Scientific rationale and applicability of dose-response models for environmental carcinogens (환경성 발암물질의 용량-반응모델의 이론적 근거와 응용에 관한 연구 - 음용수 중 chloroform을 중심으로)

  • Shin, Dong-Chun;Chung, Yong;Kim, Jong-Man;Lee, Seong-Im;Hwang, Man-Sik
    • Journal of Preventive Medicine and Public Health
    • /
    • v.29 no.1 s.52
    • /
    • pp.27-41
    • /
    • 1996
  • This study described methods to predict human health risk associated with exposure to environmental carcinogens using animal bioassay data. Also, biological assumption for various dose-response models were reviewed. To illustrate the process of risk estimate using relevant dose-response models such as Log-normal, Mantel-Bryan, Weibull and Multistage model, we used four animal carcinogenesis bioassy data of chloroform and chloroform concentrations of tap water measured in large cities of Korea from 1987 to 1995. As a result, in the case of using average concentration in exposure data and 95% upper boud unit risk of Multistge model, excess cancer risk(RISK I) was about $1.9\times10^{-6}$, in the case of using probability distribution of cumulative exposure data and unit risks, those risks(RISK II) which were simulated by Monte-Carlo analysis were about $2.4\times10^{-6}\;and\;7.9\times10^{-5}$ at 50 and 95 percentile, respectively. Therefore risk estimated by Monte-Carlo analysis using probability distribution of input variables may be more conservative.

  • PDF

Health Risk Assessment of Lead Exposure through Multi-pathways in Korea (납의 다경로 노출에 의한 건강위해성평가 : 우리 나라 일부 지역 성인들을 대상으로)

  • Chung, Yong;Hwang, Man-Sik;Yang, Ji-Yeon;Jo, Seong-Joon
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.4
    • /
    • pp.203-216
    • /
    • 1999
  • This paper describes a set of multi-pathway models for estimating health risk to lead. The models link concentrations of an environmental contaminant (lead) in air, water and food to human exposure through inhalation, ingestion, and dietary routes. Exposure is used as the foundation for predicting risk of health detriment within the population. The process of estimating exposure using often limited data and extrapolating to a large diverse population requires many assumption, inferences, and simplification. This paper is divided into four section. The first section provides lead contaminant levels on obtaining environmental concentration of air, tap water, and foods. The second section provides a discussion of exposure parameters and uncertainty associated predicting human health risk of contaminants. The third and fourth section illustrate lifetime average daily exposure (LADE) and excess cancer risk (ECR) based on exposure parameters. The relationship between concentration of lead in an environmental medium and human exposure is determined with pathway exposure factors (PEFs). The calculation of LADE and ECR is carried out using Monte-Carlo simulation with probability density function of exposure parameters. Examination of the result reveals that, for lead exposure, ingestion (food) is the dominant route of exposure rather than inhalation (air), and ingestion (tap eater).

  • PDF

Health Risk Assessment of Cryptosporidium in Tap Water in Korea (우리나라 먹는물의 크립토스포리디움에 의한 건강위해도 평가 연구)

  • Lee, Mok-Young;Park, Sang-Jung;Cho, Eun-Joo;Park, Su-Jeong;Han, Sun-Hee;Kwon, Oh-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.32-42
    • /
    • 2013
  • Objectives: Cryptosporidium, a protozoan parasite, has been recognized as a frequent cause of waterborne disease due to its extremely strong resistance against chlorine disinfection. Although there has as yet been no report of a Cryptosporidium outbreak through drinking water in Korea, it is important to estimate the health risk of Cryptosporidium in water supply systems because of the various infection cases in human and domestic animals and frequent detection reports on their oocysts in water environments. Methods: This study evaluated the annual infection risk of Cryptosporidium in tap water using the quantitative microbial risk assessment technique. Exposure assessment was performed upon the results of a national survey on Cryptosporidium on the water sources of 97 large-scale water purification plants in Korea, water treatment efficacy, and daily unboiled tap water consumption. The estimates of the US Environmental Protection Agency on the mean likelihood of infection from ingesting one oocyst were applied for effect assessment. Results: Using probabilistic methods, mean annual infection risk of Cryptosporidiosis by the intake of tap water was estimated to fall within the range of $2.3{\times}10^{-4}$ to $1.0{\times}10^{-3}$ (median $5.7{\times}10^{-4}$). The risk in using river sources was predicted to be four times higher than with lake sources. With 0.5-log higher removal efficacy, the risk was estimated to be $1.8{\times}10^{-4}$, and could then be lowered by one-third. Conclusions: These estimations can be compared with acceptable risk and then used to determine the adequacy and priority of various drinking water quality strategies such as the establishment of new treatment technology.

The relationship between skeletal muscle mass and the KOSHA cardiovascular risk in obese male workers

  • Hyo Won Chong;JunSeok Son;Changho Chae;Changho Jae
    • Annals of Occupational and Environmental Medicine
    • /
    • v.35
    • /
    • pp.40.1-40.10
    • /
    • 2023
  • Background: Efforts for the prevention and management of cardiovascular diseases (CVDs) in workers have been actively pursued. Obesity is one of the important risk factors related to CVDs. Obesity has various metabolic characteristics, and some individuals can be metabolically healthy. Body composition including skeletal muscle mass is known to have protective effect in obesity. The study aims to investigate the association between skeletal muscle mass and Korea Occupational Safety and Health Agency (KOSHA) CVD risk among obese male manufacturing workers in Korea and to identify appropriate indicators of skeletal muscle mass for predicting risk of CVDs. Methods: The study was conducted on 2,007 obese male workers at a manufacturing industry aged more than 19 years. Skeletal muscle mass, skeletal muscle index (SMI), skeletal muscle mass percent (SMM%) and skeletal muscle to body fat ratio (MFR) were used to evaluate body composition and these indicators were divided into quartiles. The odds ratios (ORs) and 95% confidence intervals (CIs) for the KOSHA CVD risk groups according to quartiles of skeletal muscle mass indicators were estimated using ordinal logistic regression analysis. Results: The OR for the KOSHA CVD risk groups in the highest quartile of SMI was 1.67 (95% CI: 1.42-1.92), while the ORs for the KOSHA CVD risk groups in the highest quartiles of SMM%, SMM/body mass index (BMI), and MFR were 0.47 (95% CI: 0.22-0.72), 0.51 (95% CI: 0.05-0.76), and 0.48 (95% CI: 0.23-0.74), respectively. Conclusions: We found that high SMI increase the likelihood of high risk of CVDs, while high SMM%, SMM/BMI, and MFR lower the likelihood of high risk of CVDs. Accurate evaluation of skeletal muscle mass can help assess the cardiovascular risk in obese male workers.

Applicability of QSAR Models for Acute Aquatic Toxicity under the Act on Registration, Evaluation, etc. of Chemicals in the Republic of Korea (화평법에 따른 급성 수생독성 예측을 위한 QSAR 모델의 활용 가능성 연구)

  • Kang, Dongjin;Jang, Seok-Won;Lee, Si-Won;Lee, Jae-Hyun;Lee, Sang Hee;Kim, Pilje;Chung, Hyen-Mi;Seong, Chang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • Background: A quantitative structure-activity relationship (QSAR) model was adopted in the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH, EU) regulations as well as the Act on Registration, Evaluation, etc. of Chemicals (AREC, Republic of Korea). It has been previously used in the registration of chemicals. Objectives: In this study, we investigated the correlation between the predicted data provided by three prediction programs using a QSAR model and actual experimental results (acute fish, daphnia magna toxicity). Through this approach, we aimed to effectively conjecture on the performance and determine the most applicable programs when designating toxic substances through the AREC. Methods: Chemicals that had been registered and evaluated in the Toxic Chemicals Control Act (TCCA, Republic of Korea) were selected for this study. Two prediction programs developed and operated by the U.S. EPA - the Ecological Structure-Activity Relationship (ECOSAR) and Toxicity Estimation Software Tool (T.E.S.T.) models - were utilized along with the TOPKAT (Toxicity Prediction by Komputer Assisted Technology) commercial program. The applicability of these three programs was evaluated according to three parameters: accuracy, sensitivity, and specificity. Results: The prediction analysis on fish and daphnia magna in the three programs showed that the TOPKAT program had better sensitivity than the others. Conclusions: Although the predictive performance of the TOPKAT program when using a single predictive program was found to perform well in toxic substance designation, using a single program involves many restrictions. It is necessary to validate the reliability of predictions by utilizing multiple methods when applying the prediction program to the regulation of chemicals.

Ecological Risk Assessment of Lead and Arsenic by Environmental Media (납과 비소에 대한 환경매체별 생태위해성평가)

  • Lee, Byeongwoo;Lee, Byoungcheun;Kim, Pilje;Yoon, Hyojung
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Objectives: This study intends to evaluate the ecological risk of lead (Pb), arsenic (As), and their compounds according to the 2010 action plan on inventory and management for national priority chemicals and provide calculations of risks to the environment. By doing so, we aim to inform risk management measures for the target chemicals. Methods: We conducted species sensitivity distribution (SSD) analysis using the collected ecotoxicity data and obtained predicted no effect concentrations (PNECs) for the in-water environment using a hazardous concentration of 5% (HC5) protective of most species (95%) in the environment. Based on the calculated PNECs for aquatic organisms, PNEC values for soil and sediment were calculated using the partition coefficient. We also calculated predicted exposure concentration (PEC) from nation-wide environmental monitoring data and then the hazard quotient (HQ) was calculated using PNEC for environmental media. Results: Ecological toxicity data was categorized into five groups and five species for Pb and four groups and four species for As. Based on the HC5 values from SSD analysis, the PNEC value for aquatic organisms was calculated as 0.40 ㎍/L for Pb and 0.13 ㎍/L for As. PNEC values for soil and sediment calculated using a partition coefficient were 77.36 and 350.50 mg/kg for Pb and 24.20 and 112.75 mg/kg for As. The analysis of national environmental monitoring data showed that PEC values in water were 0.284 ㎍/L for Pb and 0.024 ㎍/L for As, while those in soil and sediment were respectively 45.9 and 44 mg/kg for Pb, and 11.40 and 19.80 mg/kg for As. Conclusions: HQs of Pb and As were 0.70 and 0.18 in water, while those in soil and sediment were 0.59 and 0.13 for Pb and 0.47 and 0.18 for As. With HQs <1 of lead and arsenic in the environment, their ecological risk levels are found to be low.

Assessment of Health Risk Posed by Orgnic Substances of Suspended Particulate Matters in a Heavy Traffic Area of Seoul (교통 혼잡지역의 대기 부유분진중 유기혼합물에 의한 발암위해성 평가)

  • Shin, Dong-Chun;Lim, Young-Wook;Park, Seong-Eun;Chung, Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.5
    • /
    • pp.567-576
    • /
    • 1996
  • Air pollution has been recognized for many years as a factor which heightens the risk of cancer. Extractable polycyclic organic matters in air particulates have been recognized as to have carcinogenic effects. This study examined the health risks posed by organic substances of air particulates in Seoul based on methodelogies that have been developed for conducting risk posed by organic substances of sir particulates in Seoul based on methodologies that have been developed for conducting risk assessment of complex -chemical-mixture. The data used in this study was obtained from air samples collected in a heavy traffic area of Seoul (Shinchon) from 1986 to 1994. The mean concentration of total supended pariculates was 158.0.mu.g/m/msup 3/, 5% of which is consisted of organic matter. The excess cancer risk from benzo(a)pyrene (BaP) was estimated to be 3.48.times.10$^{-6}$ by applying BaP unit risk estimates to the mean concentration. 8.74ng/m BaP equivalents of potency method was 1.0.times.10$^{-3}$ . The calculated risk from EOM were comparably higher than that from benzo(a)pyrene and exceeded the acceptable risk level.

  • PDF

Uncertainty Analysis and Application to Risk Assessment (위해성평가의 불확실도 분석과 활용방안 고찰)

  • Jo, Areum;Kim, Taksoo;Seo, JungKwan;Yoon, Hyojung;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.6
    • /
    • pp.425-437
    • /
    • 2015
  • Objectives: Risk assessment is a tool for predicting and reducing uncertainty related to the effects of future activities. Probability approaches are the main elements in risk assessment, but confusion about the interpretation and use of assessment factors often undermines the message of the analyses. The aim of this study is to provide a guideline for systematic reduction plans regarding uncertainty in risk assessment. Methods: Articles and reports were collected online using the key words "uncertainty analysis" on risk assessment. Uncertainty analysis was conducted based on reports focusing on procedures for analysis methods by the World Health Organization (WHO) and U.S. Environmental Protection Agency (USEPA). In addition, case studies were performed in order to verify suggested methods qualitatively and quantitatively with exposure data, including measured data on toluene and styrene in residential spaces and multi-use facilities. Results: Based on an analysis of the data on uncertainty, three major factors including scenario, model, and parameters were identified as the main sources of uncertainty, and tiered approaches were determined. In the case study, the risk of toluene and styrene was evaluated and the most influential factors were also determined. Five reduction plans were presented: providing standard guidelines, using reliable exposure factors, possessing quality controls for analysis and scientific expertise, and introducing a peer review system. Conclusion: In this study, we established a method for reducing uncertainty by taking into account the major factors. Also, we showed a method for uncertainty analysis with tiered approaches. However, uncertainties are difficult to define because they are generated by many factors. Therefore, further studies are needed for the development of technical guidelines based on the representative scenario, model, and parameters developed in this study.

Comparison of Acute Toxicity Sensitivity of Potassium Dichromate to the Larva Neocaridina denticulata, Daphnia magna and the Juvenile Oryzias latipes (Potassium dichromate에 대한 새뱅이 유생, 물벼룩 및 송사리 치어 급성독성 민감도 비교)

  • Lee, Jae-Woo;Kim, Kyung-Tae;Cho, Jae-Gu;Kim, Ji-Eun;Lee, Jae-An;Kim, Pil-Je;Ryu, Ji-Sung
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.4
    • /
    • pp.314-318
    • /
    • 2012
  • The aims of the present study were to estimate the possibility for toxicity test and compare acute toxicity of potassium dichromate in the larva stage of Neocaridina denticulata, Daphnia magna and the juvenile stage of Oryzias latipes. N. denticulate, a freshwater shrimp lives in Korea, is an indigenous species and considered to be useful for toxicity test. D. magna and O. latipes were recommended as a test species for the OECD test guideline. The 96 h-$LC_{50}$ potassium dichromate value was 0.62 mg $L^{-1}$ for the larva stage of N. denticulata and 168.44 mg $L^{-1}$ for the juvenile stage of O. latipes. The 48 h-$EC_{50}$ value was 1.27 mg $L^{-1}$ for the D. magna. The study was confirmed higher sensitivity of the larva stage of N. denticulata to potassium dichromate compared to the D. magna and the juvenile stage of O. latipes.