• Title/Summary/Keyword: Environmental monitoring sensor

Search Result 617, Processing Time 0.025 seconds

Hetero-core Spliced Fiber Optical Sensing System for an Environment Monitoring (구조물 모니터링을 위한 헤테로 코어형 광센싱 시스템)

  • Kim, Young-Bok;Lee, Kwon-Soon;Watanabe, Kazuhiro;Sasaki, Hiroyuki;Choi, Yong-Woon
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.46-51
    • /
    • 2007
  • A multi-purpose environmental monitoring system has been developed as a commercially available standard using the technique of hetero-core spliced fiber optic sensors, for the purposes of monitoring large-scale structures and preserving natural environments. The monitoring system has been tested and evaluated in a possible outdoor condition, in view of the full-scale operation at actual sites to be monitored. Additionally, the developed system in this work conveniently provides us with various options of sensor modules intended for monitoring such physical quantities as displacement, distortion, pressure, binary states, and liquid adhesion. Two channels of optical fiber line were monitored in each channel, three displacement sensor modules were connected in series, in order to examine the performance to a pseudo-cracking experiment in the outdoor situation and to clarify temperature influences an the system, in terms of the coupling of optical connectors and the OTDR stability. The results from the pseudo-cracking experiment agreed with the actual cracks, by means of calculation, based an the detected displacement values and their geometrical arrangement of the used sensor modules. The temperature change, ranging from 10 to $20^{\circ}C$ resulting from the 10-days free running operation, was found to influence the system stability of ${\pm}10{\mu}m$, primarily due to the coupling instability of the used optical connectors. It was found that fusion splicing, rather than the use of connectors, reduced the fluctuation dawn to ${\pm}2{\mu}m$. The specification and performance of various option modules have been demonstrated to show the capability of inspecting various physical quantities by use of the single system, which would be suitable for multi-purpose environmental monitoring.

Concrete structural health monitoring using piezoceramic-based wireless sensor networks

  • Li, Peng;Gu, Haichang;Song, Gangbing;Zheng, Rong;Mo, Y.L.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.731-748
    • /
    • 2010
  • Impact detection and health monitoring are very important tasks for civil infrastructures, such as bridges. Piezoceramic based transducers are widely researched for these tasks due to the piezoceramic material's inherent advantages of dual sensing and actuation ability, which enables the active sensing method for structural health monitoring with a network of piezoceramic transducers. Wireless sensor networks, which are easy for deployment, have great potential in health monitoring systems for large civil infrastructures to identify early-age damages. However, most commercial wireless sensor networks are general purpose and may not be optimized for a network of piezoceramic based transducers. Wireless networks of piezoceramic transducers for active sensing have special requirements, such as relatively high sampling rate (at a few-thousand Hz), incorporation of an amplifier for the piezoceramic element for actuation, and low energy consumption for actuation. In this paper, a wireless network is specially designed for piezoceramic transducers to implement impact detection and active sensing for structural health monitoring. A power efficient embedded system is designed to form the wireless sensor network that is capable of high sampling rate. A 32 bit RISC wireless microcontroller is chosen as the main processor. Detailed design of the hardware system and software system of the wireless sensor network is presented in this paper. To verify the functionality of the wireless sensor network, it is deployed on a two-story concrete frame with embedded piezoceramic transducers, and the active sensing property of piezoceramic material is used to detect the damage in the structure. Experimental results show that the wireless sensor network can effectively implement active sensing and impact detection with high sampling rate while maintaining low power consumption by performing offline data processing and minimizing wireless communication.

The Design and Implementation of a Real-Time FMD Cattle Burial Sites Monitoring System Based-on Wireless Environmental Sensors (u-EMS : 센서네트워크 기반의 가축매몰지 악취환경정보 실시간 모니터링 시스템 설계 및 구현)

  • Moon, Seung-Jin;Kim, Hong-Gyu;Park, Kyu-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1708-1721
    • /
    • 2011
  • Recent outbreak of cattle diseases such as foot-and-mouth disease(FMD) requires constant monitoring of burial sites of mass cull of cattles. However, current monitoring system takes environmental samples from burial sites with period of between one and two weeks, which makes it impossible for non-stop management of hazardous bio-waste. Therefore, in this study, we suggest an improved real-time environmental monitoring system for such bio-hazardous sites based on wireless sensor networks, which makes constant surveillance of the FMD burial sites possible. The system consists mainly several wireless environmental monitoring sensors(i.e dust, Co2, VOC, NH3, H2S, temperature, humidity) nodes and GPS location tracking nodes. Through analysis of the relayed of the environmental monitoring data via gateway, the system makes it possible for constant monitoring and quick response for emergency situation of the burial sites. In order to test the effectiveness of the system, we have installed a set of sensor to gas outlets of the burial sites, then collected and analyzed measured bio-sensing data. We have conducted simulated emergency test runs and was able to detect and monitor the foul smell constantly. With our study, we confirm that the preventive measures and quick response of bio environmental accident are possible with the help of a real-time environmental monitoring system.

Global environment change monitoring using the next generation satellite sensor, SGLI/GCOM-C

  • HONDA Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.11-13
    • /
    • 2005
  • The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concluded that many collective observations gave a aspect of a global warming and other changes in the climate system. Future earth observation using satellite data should monitor global climate change, and should contribute to social benefits. Especially, human activities has given the big impacts to earth environment This is a very complex affair, and nature itself also impacts the clouds, namely the seasonal variations. JAXA (former NASDA) has the plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, is an optical sensor from Near-UV to TIR. This sensor is the GLI follow-on sensor, which has the various new characteristics. Polarized/multi-directional channels and 250m resolution channels are the unique characteristics on this sensor. This sensor can be contributed to clarification of coastal change in sea surface. This paper shows the introduction of the unique aspects and characteristics of the next generation satellite sensor, SGLIIGCOM-C, and shows the preliminary research for this sensor.

  • PDF

Development of a remote monitoring system for gas detection at the subway station (지하철 역내 가스 검출 원격 모니터링 시스템 구현)

  • Park, Yong-Man;Kim, Hei-Sik;Kim, Gyu-Sik;Lee, Moon-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.439-441
    • /
    • 2007
  • The seoul metropolitan subway has installed 8 lines and about 500 stations to transport 5 million passengers everyday. The underground air pollution level in the subway stations is very severe status, which is very harmful to the commutators and its personals. Although subway roles as such a massive and huge transportation system, the subway doesn't adapt yet any real-time air monitoring system. They have only some hand-held type detector equipments for monitoring air pollution. Therefore subway passengers are exposed to the harmful air pollution environment. The most harmful environmental parameters among the air pollution are known as the dust and sound noise dB level in the subway station. Because the dust is consisted of very small particles, we can't see them easily in dark condition on the platform, but it is very harmful. The monitoring system for air pollution is developed using embedded system attached with 6 different environmental sensors. This system monitors air pollution of dust sound noise, gas, temperature, humidity, inflammable gas, toxic gas in the subway ?station. The sensor unit of the ARM-CPU board and sensor transmits real time environmental data to the main server using Zigbee wireless communication module and TCP/IP network. The main control server receives and displays the real-time environmental data, and it send alarms to the personals when high level value.

  • PDF

세라믹 가스센서를 이용한 토양증기추출공정의 배출가스 모니터링 기법 연구

  • 양지원;조현정;이재영;곽무영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.250-252
    • /
    • 2002
  • The goals of environmental monitoring are to locate and quantify the significant contamination, estimate the fate and transport, estimate the potential exposure and risks to humans and the environment, and track the performance of various remedial technologies. In this study, ceramic gas sensor system is proposed to enhance the effectiveness of soil vapor extraction (SVE) process by monitoring the effluent gas. SVE is a technique that is widely used to remediate unsaturated soils contaminated with volatile organic contaminants. The sensor response for benzene, toluene, and xylene, the representative effluent gas compositions of SVE process, was evaluated using the proposed sensor system. As a result, it was verified that the response of sensor was increased or decreased very sensitively according to the change of the effluent gas concentration. Besides, the sensor could detect the difference over a wide range of concentration and it was more sensitive in order of xylene, toluene, and benzene. It is expected that this VOC analysis method results in field monitoring costs saying and appropriate immediate action for process control. More detailed experiments are being conducted in our research group.

  • PDF

Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements

  • Park, Jae-Hyung;Kim, Jeong-Tae;Hong, Dong-Soo;Mascarenas, David;Lynch, Jerome Peter
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.711-730
    • /
    • 2010
  • This study presents the design of autonomous smart sensor nodes for damage monitoring of tendons and girders in prestressed concrete (PSC) bridges. To achieve the objective, the following approaches are implemented. Firstly, acceleration-based and impedance-based smart sensor nodes are designed for global and local structural health monitoring (SHM). Secondly, global and local SHM methods which are suitable for damage monitoring of tendons and girders in PSC bridges are selected to alarm damage occurrence, to locate damage and to estimate severity of damage. Thirdly, an autonomous SHM scheme is designed for PSC bridges by implementing the selected SHM methods. Operation logics of the SHM methods are programmed based on the concept of the decentralized sensor network. Finally, the performance of the proposed system is experimentally evaluated for a lab-scaled PSC girder model for which a set of damage scenarios are experimentally monitored by the developed smart sensor nodes.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

Hetero-core Spliced Fiber Optic Sensing System for Environmental Monitoring (환경정보 모니터링을 위한 헤테로코어형 광파이버 센싱 시스템)

  • Kim, Young Bok;Kim, Young Bae;Lee, Hwan Woo
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.3
    • /
    • pp.77-81
    • /
    • 2008
  • In this paper, we introduce a multi purpose environmental monitoring system developed as a commercially available standard using the technique of hetero-core spliced fiber optic sensor. The monitoring system has been tested and evaluated in a possible outdoor condition in view of the full scaled operation at actual sites to be monitored. Additionally, the developed system in this work conveniently provides us with various options of sensor modules intended for monitoring such physical quantities as displacement, distortion, pressure, binary states, and liquid adhesion. Two channels of optical fiber line were monitored, in each of which three displacement sensor modules were connected in series, in order to examine the performance to a pseudo-cracking experiment in the outdoor situation, and to clarify temperature influences to the system in terms of the coupling of optical connectors and the OTDR stability. The pseudo-cracking experiment successfully observed the actually given cracks by means of calculation based on the detected displacement values and their geometrical arrangement of the used sensor modules. And the robustness to the temperature is verified in the various temperature change.

  • PDF

A Cyber-Physical Information System for Smart Buildings with Collaborative Information Fusion

  • Liu, Qing;Li, Lanlan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1516-1539
    • /
    • 2022
  • This article shows a set of physical information fusion IoT systems that we designed for smart buildings. Its essence is a computer system that combines physical quantities in buildings with quantitative analysis and control. In the part of the Internet of Things, its mechanism is controlled by a monitoring system based on sensor networks and computer-based algorithms. Based on the design idea of the agent, we have realized human-machine interaction (HMI) and machine-machine interaction (MMI). Among them, HMI is realized through human-machine interaction, while MMI is realized through embedded computing, sensors, controllers, and execution. Device and wireless communication network. This article mainly focuses on the function of wireless sensor networks and MMI in environmental monitoring. This function plays a fundamental role in building security, environmental control, HVAC, and other smart building control systems. The article not only discusses various network applications and their implementation based on agent design but also demonstrates our collaborative information fusion strategy. This strategy can provide a stable incentive method for the system through collaborative information fusion when the sensor system is unstable in the physical measurements, thereby preventing system jitter and unstable response caused by uncertain disturbances and environmental factors. This article also gives the results of the system test. The results show that through the CPS interaction of HMI and MMI, the intelligent building IoT system can achieve comprehensive monitoring, thereby providing support and expansion for advanced automation management.