• Title/Summary/Keyword: Environmental loading ratio

Search Result 380, Processing Time 0.027 seconds

A Study on Transferred Load Reduction on Paved Track Roadbed with Low Elastic Base Plate Pad (저탄성 베이스플레이트 패드 적용에 따른 포장궤도 노반에서의 전달하중 저감에 관한 연구)

  • Lee, Il-Wha;Kang, Yun-Suk;Lee, Hee-Up
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.399-405
    • /
    • 2008
  • Development of the paved track is required as a low-maintenance of conventional line. The paved tracks are one of the types of the ballast reinforced tracks those are manufactured by adopting the prepacked concrete technique. The main elements of this tracks are large sleeper, low elastic pad, fastener, cement mortar, geotextile and recycled ballast. Low elastic pad is the most effective element of such tracks on the basis of stress-displacement characteristics, dynamic response and fatigue characteristics. The stiffness of the pad determine the stiffness of the track. Consequently, it is more important in case of concrete track structure such as paved track because application of low elastic pad seriously effect the durability and stability of the track. The main objective of this study is to confirm the reduction of train load, which transfer to roadbed through various pad effects. To achieve this task static, numerical analysis and real scale repeated loading test was performed while load reduction effect of low elastic pad was analyzed by using displacement, stress and strain ratio characteristics of the paved track.

Behavior of PSC Composite Bridge with Precast Decks (프리캐스트 바닥판 PSC 합성거더 교량의 거동)

  • Chung, Chul Hun;Hyun, Byung Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.873-880
    • /
    • 2006
  • PSC composite bridge with precast decks which was designed by the proposed horizontal shear equation was fabricated. Fatigue test was performed to evaluate the endurance of shear connection and the behavior of PSC composite bridge. After all the fatigue loading were applied, no crack and no residual slip were occurred. The flexural stiffness of PSC composite bridge was maintained the initial value, and demage of shear connection was not occurred. To verify the applicability of horizontal shear equation and shear connection detail and to evaluate the strength of PSC composite bridges, static test was also executed. PSC composite bridges with precast decks had 2.08 safety factor which was the ratio of crack to serviceability load and showed ductile behavior after ultimate load. Test results showed that the proposed design equation of the shear connection gave reasonable horizontal shear connection design. Fast and easy construction would be achieved using the suggested precast system.

Comparison of Domestic and Foreign Design Standards for Overall Stability of Soil Nailed Slopes (쏘일네일 보강 비탈면의 전체 안정성에 대한 국내외 설계기준 비교)

  • Kim, Tae-Won;You, Kwang-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.6
    • /
    • pp.5-13
    • /
    • 2019
  • The international trend in soil nailed wall design has been evolved from the allowable stress design to limit state design and it is still currently ongoing. The design guidelines in Korea and Hong Kong still adopts the allowable stress design philosophy while those in others mostly do the limit state design. In this study, four soil nail design methods presented in the major design guidelines (U.S. FHWA GEC 7 (2015), Clouterre in France (1991), Soil nailing - best practice guidance in U.K. (CIRIA, 2005), Geoguide 7 in Hong Kong (2008) and Design standard for slope reinforcement work in Korea (KDS 11 70 15 f: 2016)) are described and analyzed in brief. The factor of safety and CDR (Capacity-to-Demand Ratio) which is used to measure the degree of conservatism of a design guide are obtained for the two cases. One is the design example presented in CIRIA (2005) and the other is in-situ loading test performed on the top of backfill of the soil nail wall to investigate the conservatism of design guidelines. It is revealed that the design method in overall stability of soil nail walls in domestic design method (CDR=0.78) is the most conservative and those by Clouterre (CDR=0.99, 1.09), Geoguide 7 (CDR=1.13, 0.97), U.S. FHWA (CDR=1.09, 1.07) and CIRIA (CDR=1.40, 1.16) in order from the second most conservative to the least conservative for the design example presented in CIRIA. For the in-situ loading test performed on the top of backfill of the soil nail wall, the order of conservatism is identical except that the places of Geoguide 7 (CDR=0.66, 0.72) and FHWA (CDR=0.73, 0.72) are changed. However, the results obtained among U.S. FHWA (2015) and Clouterre (1991) and Geoguide 7 (2008) are not so different.

Evaluation of Sustainability for Olive Flounder Production by the Systems Ecology I. EMERGY Analysis of Olive Flounder Production (시스템 생태학적 접근법에 의한 넙치생산의 지속성 평가 I. 넙치생산에 대한 EMERGY 분석)

  • KIM Nam Kook;SON Ji Ho;KIM Jin Lee;LEE Suk Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.218-224
    • /
    • 2001
  • Olive flounder is one of the most important aquaculture species in Korea. Interest in the aquaculture of olive flounder has increased recently because of its good growth characteristics and high market price, However, the productivity of olive flounder aquaculture depends on economic inputs such as fuels, facilities, and labor, In this study, EMERGY concepts was used to compare the environment and economy of two olive flounder production methods, fishing fisheries and aquaculture, and to evaluate the sustainability of olive flounder production, EMERGY spelled with an 'm' is a universal measure of real wealth of the work of nature and society made on a common basis. Calculations of EMERGY production and storage provide a basis for making choices about environment and economy following. the general public policy to maximize real wealth, production and use. EMERGY flows from environment were $94.13\%$ for olive flounder fishing fisheries, and $2.20\%$ for aquaculture. EMERGY yield ratio, environmental loading ratio and sustainability index were 17.05, 1.02 and 274 for fishing fisheries and 0.06, 44.41 and 0.023 for aquaculture, respectively. These ratios indicate that the fishing fisheries will yield more net EMERGY, while the aquaculture requires a lower investment of EMERGY.

  • PDF

The Characteristic of Point Source Loads for Nitrogen and Phosphorus to Gwangyang Bay, Korea (광양만으로 유입되는 질소, 인의 점원 오염부하 특성)

  • Kim Do-Hee;Cho Hyeon-Seo;Lee Young Sik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • We estimated the loadings of nitrogen and phosphorus flowing into Gwangyang Bay front river for monthly interval from April to December of 2003. We analyzed the concentrations of nitrogen and phosphorus in water and estimated the flowing rates of fresh water in 34 rivers. The amounts of water flowing into the Gwdngyang Bay from Sum-Jin River was 51-76% in the total inflow of the river. The river water over 96% of discharge was from Sumjin River, Dong River, Ju-Kyo River, Seo River and Shinkyum River. The flowing patterns of nitrogen and phosphorus into Gwangyang Bay were similar to the flowing of river. The nitrogen and phosphorus loadings into the Bay were higher in July and August than in dry seasons. In particular, the concentrations of phosphorus were high in Namshu River, Deukyang River and Kilho River sewage during in dry seasons. The range of DIN and TN loadings from Sumjim River were 46-66% and 36-64%, respectively. The loading of DIP and TP from Sumjim River were 2-55% and 12-67%, respectively. These results show that the most efficient control of N. p flow into Gwangyang Bay is to restrain the inflows of N, p from Namshu River, Deukyang River and Kilho River and to restrain the flows of N, p from Dong River, Ju-Kyo River and industrial plant. The DIN/DIP atom ratio in river water was about 18 in July and August, while the ratio was more higher in dry seasons than July and August of rainy seasons. The TN/TP atom ratio in river water was about 7 in rainy seasons, while the ratios were higher than 100 in the other months of dry seasons.

  • PDF

Prediction of Structural Behavior of FRP Rebar Reinforced Concrete Slab based on the Definition of Limit State (한계상태 정의에 따른 FRP Rebar 보강 콘크리트 슬래브의 구조거동 예측)

  • Oh, Hongseob;Kim, Younghwan;Jang, Naksup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.371-381
    • /
    • 2020
  • The failure mode of concrete reinforced with FRP is defined as the concrete crushing and the fiber rupture and the definition of limit state is a slightly different according to the design methods. It is relatively difficult to predict of FRP reinforced concrete because the mechanical properties of fibers are quite depending on its of fibers. The design code by ACI440 committee, which has been developed mainly on GFRP having low modulus of elasticity, is widely used, but the applicability on other FRPs of this code has not been sufficiently verified. In addition, the ultimate and serviceability limit state based on the ACI440 are comparatively difficult to predict the behavior of member with the 0.8~1.2 𝜌b because crushing and rupturing failure can be occurred simultaneously is in this region of reinforcement ratio, and predicted deflection is too sensitive according to the loading condition. Therefore, in this study, reliability and convenience of the prediction of structural performance by design methods such as ACI440 and MC90 concept, respectively, were examined through the experimental results and literature review of the beam and slab with the reinforcement ratio of 0.8 ~ 1.4. As a result of the analysis, it can be applied to the FRP reinforced structure in the case of the simple moment-curvature formula (LIM-MC) of Model Code, and the limit state design method based on the EC2 is more reliable than the ultimate strength design method.

Experimental Study on the Shear Strength Characteristics of the Saturated Sand (포화(飽和)모래의 전단강도특성(剪斷强度特性)에 관(關)한 실험적(實驗的) 연구(研究) -대구지역(大邱地域) 낙동강(洛東江) 모래에 대해-)

  • Kim, Young Su;Seo, In Shik;Kim, Byoung Tak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1417-1431
    • /
    • 1994
  • In this study, shear strength characteristics of the Nak-Dong river sand in Taegu area are investigated by triaxial compression test, considering shear strain control velocity, relative density, and confining pressure. The results from Lade model and Modified Lade model are compared with the measured value in the laboratory test. The results by the change of shear strain control velocity, relative density, and confining pressure are as follows; 1) The stress limit, which can be Coulomb's law about the Nak-Dong river sand, have ranged 120~200 kpa at 0.08%/min and 120~150 kpa at 0.5%/min. These limits are smaller than that of the calcareous sand and the well-graded, quartz sand. 2) The parameters needed to Lade model and Modified Lade model are much affected by the strain control velocity and the relative density. Consequently, in the field, it is important to use parameters aptly after accurately understanding both the loading condition and subsoil condition. 3) Overall, the principal stress ratio obtained from constitutive model equations is not affected by the control velocity, but both the relative density and confining pressure affect the result of constitutive model equations. Consequently, the study on the various conditions about the relative density and confining pressure is needed to accurately predict the stress-strain behavior on the Nak-Dong river sand. 4) For the range of the used confining pressure in the study, the Lade model shows better agreements with the measured value than the Modified Lade model, comparing the measured value with the principal stress ratio at failure and the internal friction angle of failure envelope obtained from the Lade model and Modified Lade model.

  • PDF

Vertical Vibration of Rigid Circular Footings on Sand (사질토(砂質土) 위에 놓인 강성(剛性) 원형기초(圓形基礎)의 수직진동(垂直振動))

  • Kim, Soo Il;Min, Tuk Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.127-136
    • /
    • 1985
  • A simplified single degree of freedom analog with mass-spring-dashpot is proposed in this study. The simplified analog can describe the dynamic behavior of a rigid circular footings whose contact pressures are parabolic. The analog proposed in this study shows remarkable agreement when compared with the elastic half-space theory the analog is also compared with vertical vibration test results of model concrete footings. For the vibration experiments, 11 circular footings with different mass ratio are constructed. The elastic half-space is represented by compacted sand layer. A constant force excitation vibrator is used for the dynamic loading. The frequency range for vibration tests is 30 to 100 Hz. From the dynamic experiments, it is found that the measured resonant frequencies agree very well with the analog results, however, the ratio of theoretical and measured resonant amplitudes vary between 0.5 and 1.7. It is also found that, when the dynamic force is increased, the resonant frequency is decreased slightly and the resonant amplitude is increased slightly.

  • PDF

Evaluation of Filter-Adsorber(F/A) Process for Removal of Disinfection By-products(DBPs) (소독부산물 제어를 위한 실공정 F/A 운영에 관한 고찰)

  • Kim, Seong-Su;Lee, Kyung-Hyuk;Lim, Jae-Lim;Chae, Seon-Ha;Kang, Byeong-Soo;Moon, Pil-Joong;Ahn, Hyo-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1035-1042
    • /
    • 2005
  • Granular Activated Carbon(GAC) is widely used in drinking water treatment. At S and B Water Treatment Plant, GAC is used in place of granular media in conventional rapid filters(GAC Filter-Adsorber) for removal of Disinfection By-products(DBPs). The primary focus of this study is on the performance of existing filter-adsorber, and their operation. It was found that F/A process removed turbidity as effective as sand system. The ratio of Hydrophobic DOM (HPO) and hydrophilic DOM (HPI) fraction in the raw water at S and B WTP was similar. Filter Adsorber presented earlier DOC breakthrough and steady state condition which was contributed by biodegradation during operation period. The removal efficiency of DBPs were used to evaluate the filter performance. The DBPs concentration of F/A treated water was below treatment goal level (THM < $80\;{\mu}g/L$, HAA < $60{\mu}g/L$). The removal efficiency of THM decreased rapidly during operation period. However, HAA were removed steadily regardless of the influent concentration of HAA. These results indicate that the removal of THM depend upon the adsorption mechanism while the removal of HAA depend upon biodegradation as well as adsorption. The decrease of adsorption capacity and characteristic value of GAC may be attributed to the effect of high organic loading, residual free chlorine, coagulants, manganese oxidants and frequently backwashing. This study has confirmed that Filter adsorber process can be considered as effective alternatives for the removal of DBPs, especially HAA.

Relationship between Physico-Chemical Factors and Chlorophyll-$a$ Concentration in Surface Water of Masan Bay: Bi-Daily Monitoring Data (마산만 표층수에서 물리-화학적 수질요인과 엽록소-$a$ 농도 사이의 관계: 격일 관측 자료)

  • Jung, Seung-Won;Lim, Dhong-Il;Shin, Hyeon-Ho;Jeong, Do-Hyun;Roh, Youn-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • In order to investigate water quality factors controlling chlorophyll-$a$ concentrations, the by-daily monitoring was conducted from February to November 2010 in 4 stations of Masan Bay. Seasonal variability in physico-chemical factors was mainly controlled by freshwater loading as a result of precipitation: chemical oxygen demand, suspended solids and nutrient concentrations rapidly increase during the heavy rainy season, whereas they decrease in the dry season. From late winter to mid spring, phosphorus and silica sources relative to Redfield ratio were probably functioned as limiting factor for phytoplankton flourishing in surface waters, but nitrogen concentration during mid-spring to autumn might be responsible for the increase of phytoplankton biomass. The multiple regression analysis revealed that variations in chlorophyll-$a$ concentration may be strongly correlated with changes of water temperature, chemical oxygen demand, dissolved inorganic phosphorus in spring, and salinity, chemical oxygen demand and precipitation in summer. Consequently, in the Masan Bay, a heavy rainfall event is an important factor to determine changes of biotic and abiotic factors, and in addition the dynamics of chlorophyll-$a$ concentration are strongly affected by changes of hydrological factors, especially water temperature, precipitation and nutrients.