• Title/Summary/Keyword: Environmental flows

Search Result 685, Processing Time 0.031 seconds

Effect of Double Noise-Barrier on Air Pollution Dispersion around Road, Using CFD

  • Jeong, Sang Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Noise-barriers on both sides of the roadway (hereafter referred to as double noise-barriers), are a common feature along roads in Korea, and these are expected to have important effects on the near-road air pollution dispersion of vehicle emissions. This study evaluated the double noise-barrier impact on near-road air pollution dispersion, using a FLUENT computational fluid dynamics (CFD) model. The realizable k-${\varepsilon}$ model in FLUENT CFD code was used to simulate vehicle air pollutant dispersion, in around 11 cases of double noise-barriers. The simulated concentration profiles and surface concentrations under no barrier cases were compared with the experimental results. The results of the simulated flows show the following three regimes in this study: isolated roughness (H/W=0.05), wake interface (H/W=0.1), and skimming flow (H/W>0.15). The results also show that the normalized average concentrations at surface (z=1 m) between the barriers increase with increasing double noise-barrier height; however, normalized average concentrations at the top position between the barriers decrease with increasing barrier height. It was found that the double noise-barrier decreases normalized average concentrations of leeward positions, ranging from 0.8 (H/W=0.1, wake interface) to 0.1 (H/W=0.5, skimming flow) times lower than that of the no barrier case, at 10 x/h downwind position; and ranging from 1.0 (H/W=0.1) to 0.4 (H/W=0.5) times lower than that of the no barrier case, at 60 x/h downwind position.

Numerical Study of Design of Micro Bubble Generation Nozzle (마이크로버블 발생노즐 설계를 위한 수치적 연구)

  • Kim, Hyun-Il;Lee, Sang Min;Shin, Myung Sun;Lee, Jong Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1643-1651
    • /
    • 2012
  • Recently, with increasing standards of living and income, environmental pollution has attracted increased interest. On account of a revision to water pollution regulations, the improvement of sewage disposal efficiency was studied. One of the ways to improve the sewage disposal efficiency is to increase the dissolved oxygen content of water in the water treatment tank. In this study, we suggest a nozzle design using a spiral and a crash mode for generating micro bubbles and thus increasing the dissolved oxygen content of water. The micro bubbles through the spiral and crash flows are generated in the nozzle. In the design of the crash mode, the development goal with regard to the bubble size was not achieved. On the other hand, a bubble size of $0-50{\mu}m$ accounted for 79.3% of all bubbles in the spiral mode. This study should contribute toward increasing the sewage disposal efficiency.

Optimum Size Analysis for Dam Rehabilitation Using Reliability Analysis (신뢰성 분석을 통한 기존 댐 재개발의 적정규모 결정의 관한 연구)

  • Kwon, Hyun-Han;Moon, Young-Il;Choi, Byung-Gyu;Yoon, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.97-110
    • /
    • 2005
  • This paper presents a procedure of evaluation of reservoir capacity for additional water storage for dam rehabilitation. One of the techniques on the extension of rainfall has been developed, and the daily stream flows were simulated by the NWS-PC long-term rainfall-runoff model with the input of the extended daily rainfall which was stochastically generated by the nonhomogeneous markov chain model. We peformed a reliability analysis to Guisan dam about the optimal capacity of dam rehabilitation by using performance criteria that Hashimoto et al. (1982) presented. We estimated that the most suitable water level is approximately 155EL.M. suggested that this method can use supplemental methods to estimate optimum dam scale.

Estimation of Flood Quantile in Ungauged Watersheds for Flood Damage Analysis Based on Flood Index of Natural Flow (미계측 유역의 홍수피해분석을 위한 자연유량의 홍수지표 기반 확률홍수량 산정)

  • Chae, Byung Seok;Choi, Si Jung;Ahn, Jae Hyun;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.175-182
    • /
    • 2018
  • In this study, flood quantiles were estimated at ungauged watersheds by adjusting the flood quantiles from the design rainfall - runoff analysis (DRRA) method based on regional frequency analysis. Comparing the flood frequency analysis (FFA) and DRRA, it was found that the flood quantiles estimated by the DRRA method were overestimated by 52%. In addition, a practical method was suggested to make an flood index using natural flows to apply the regional frequency analysis (RFA) to ungauged watersheds. Considering the relationships among DRRA, FFA, and RFA, we derived an adjusting formula that can be applied to estimate flood quantiles at ungauged watersheds. We also employed Leave-One-Out Cross-Validation scheme and skill score to verify the method proposed in this study. As a result, the proposed model increased the accuracy by 23.2% compared to the existing DRRA method.

History and Current Situation of River Management using Physical Habitat Models in the U.S. and Japan

  • Sekine, Masahiko
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • History of Instream Flow Incremental Methodology (IFIM) Following the large reservoir and water development era of the mid-twentieth century in North America, resource agencies became concerned over the loss of many miles of riverine fish and wildlife resources in the arid western United States. Consequently, several western states began issuing rules for protecting existing stream resources from future depletions caused by accelerated water development. Many assessment methods appeared during the 1960's and early 1970's. These techniques were based on hydrologic analysis of the water supply and hydraulic considerations of critical stream channel segments, coupled with empirical observations of habitat quality and an understanding of riverine fish ecology. Following enactment of the National Environmental Policy Act (NEPA) of 1970, attention was shifted from minimum flows to the evaluation of alternative designs and operations of federally funded water projects. Methods capable of quantifying the effect of incremental changes in stream flow to evaluate a series of possible alternative development schemes were needed. This need led to the development of habitat versus discharge functions developed from life stage-specific relations for selected species, that is, fish passage, spawning, and rearing habitat versus flow for trout or salmon. During the late 1970's and early 1980's, an era of small hydropower development began. Hundreds of proposed hydropower sites in the Pacific Northwest and New England regions of the United States came under intensive examination by state and federal fishery management interests. During this transition period from evaluating large federal reservoirs to evaluating license applications for small hydropower, the Instream Flow Incremental Methodology (IFIM) was developed under the guidance of the U.S. Fish and Wildlife Service (USFWS).

Research Trends and Future Direction for Sustainable Agricultural and Forest Management (지속가능한 영농·영림을 위한 국내외 연구동향 및 향방)

  • Kim, Hakyoung;Choi, Sung-Won;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.236-247
    • /
    • 2015
  • Domestic agricultural and forest management suffers disturbances arising from rapid economic, social and environmental changes including climate change. Sustainable management has emerged as a key to overcoming these challenges. From the domestic and international viewpoint, we have identified mainly three (i.e. indicator, accounting, and ecological) approaches to sustainable management of agricultural and forest ecosystems. Compared to persistent investment in indicator and accounting approaches, we find the paucity of the domestic efforts in ecological approach. The latter approach can be facilitated based on the long-term meteorological and flux data including the ecosystem-level energy, matter and information flows, which have been monitored and managed by Korea Meteorological Administration, Rural Development Administration and Korea Forest Service. In order to keep up with vigorous international efforts toward sustainable ecosystem management, more interdisciplinary, multidisciplinary and transdisciplinary collaborations among diverse domestic sectors and institutes are essential.

A Study on Extracting Bottom Water Taking in Concern of Temperature Level Boundaries (수온층을 고려한 저층수 취수 기술에 관한 연구)

  • Sim, Kyung-Jong;Park, Hee-Moon;Lim, Hyun-Mook;Cho, Su;Lee, Su-Yul;Park, Tae-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1285-1290
    • /
    • 2008
  • The interest in use of new field of energy and unused existing potential energy has been raised in number of advanced countries including South Korea. As a respond of the interest and the following reactions, a new technology which helps to reduce bad environmental factors and decrease national energy consumption rate in the way of extract cold-heat energy in dam water. This research focuses on a method that enables taking the water flows in desirable temperature range whilst keeping water temperature boundaries of bottom level water. The analysis was made in simulating on CFD. In order to keep the temperature boundary level, a deep well pump was set in piping in the simulation. As the significant result, the most alteration in temperature was found when the smallest size of pipe was plumbed. However, when the flow has small value of velocity, no matter how big the piping size was, the temperature variation was negligible. Therefore, possible hypothesis was made as bigger piping as fast flow will have better function in the way to keep the temperature boundary level.

  • PDF

The Investigation of Gene Flows in Artificial Pollination between GM Rice and its Wild Relatives by RAPD Analysis (RAPD PCR에 의한 GM벼의 야생 근연종 벼로의 유전자 전이 분석법)

  • Kim, Yoon-Sik;Kim, Hyun-Soon;Joung, Hyouk;Jeon, Jae-Heung
    • Korean Journal of Plant Resources
    • /
    • v.19 no.5
    • /
    • pp.612-616
    • /
    • 2006
  • In recent years, there has been increasing concerns in gene flow from GM crops to wild or weedy relatives as a potential risk in the commercialization of GM crops. To access the possibility of the environmental impacts by GM rice, small-scale experiments of gene transfer were carried out. Herbicide and drought stress resistant GM rice and non-GM rice Nakdongbyeo, wild rice Oryza nivara, and weedy rice Sharebyeo were used for artificial pollination experiments and bar gene was used as a tractable marker after pollination. The harvested putative hybrid seeds after artificial pollination were germinated and true hybrid plants were selected by basta treatment. The hybrid plants were verified again by PCR amplification of bar and trehalose-6-phosphate phosphatase (TPP) genes and RAPD PCR analysis.

Cost , Benefit Analysis of Operation System Change in the Hospital Foodservice (대학병원 영양부서 운영체계 변경의 비용.편익분석)

  • Kim, Hyeong-Mi;Yang, Il-Seon;Park, Eun-Cheol;Im, Hyeon-Suk
    • Journal of the Korean Dietetic Association
    • /
    • v.6 no.1
    • /
    • pp.33-43
    • /
    • 2000
  • Environmental pressures from such sources an economic condition, the government and inter-institutional competition create managerial challenges. Economic pressures may be forcing dietetic dept, in hospital to utilize cost∙benefit analysis to assist them in their problem solving. Cost∙benefit analysis have been widely used in business, industry and many other fields with only limited application to foodservice. Due to the lack or this information the purposes of this study were to identify use of cost∙benefit analysis in hospital foodservice system to evaluate the economic efficiency of alternatives, and to make recommendation for operation system change. Using the cost∙benefit method, cash flows are separated into cost and benefits. For an alternative to be selected, indicators, such as NPV, benefit-cost ratio (B/C ratio) with 5% discount rate per annum. The sensitivity analysis was also conducted with difference rate 3%, 7% respectively and reduced employee payroll change. The result of this study can be summarized as follows : 1. The total cost of investment for operation system change was 390,570 thousand won and the total benefit through operation system change was 865,808 thousand won. 2. Net present value(NPV) for 5 years was 475,239 thousand won and benefit-cost ratio was 2.22. 3. In sensitivity analysis with different discount rate 3%, 7%, benefit-cost ratio was 2.25, 2.18 respectively, with total reduced employee payroll change, benefit-cost ratio was 2.86. In conclusion, total benefits were exceeded total costs. Therefore, the project of operation system change in hospital foodservice was found to be economically efficient.

  • PDF

Groundwater Flow Analysis Using Finite Difference Method in Volcanic Island (화산도서에서 유한차분법을 이용한 지하수 유동해석)

  • Choe, Yun-Yeong;Lee, Sun-Tak
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.611-622
    • /
    • 2000
  • In this study, MODFLOW model is used to analyze the groundwater flow system of Seoguipo area in Cheju island, The final parameters of permeability coefficient and storage coefficient of target area can be obtained by trial and error method using the measured data of pumping rate as initial values. And it is found that the applicability for groundwater flow system is reflected well from the simulation result of the model. Seoguipo area spring water is thought to appear by relatively stable groundwater recharge below EL. 400m according to head distribution through the analysis of observed data considering topographic and geological characteristics, Lee's study(996), and the simulation result. Also it is known that point II, III, and VI show relatively large velocity vectors, and groundwater flows through the movement path which is distributed in various directions of I, II, III, IV, V, VI, and VIl form the result of velocity vector analysis using head distribution result values to analyze the groundwater flow path under unsteady flow condition.dition.

  • PDF