• Title/Summary/Keyword: Environmental element

Search Result 2,886, Processing Time 0.036 seconds

The new flat shell element DKMGQ-CR in linear and geometric nonlinear analysis

  • Zuohua Li;Jiafei Ning;Qingfei Shan;Hui Pan;Qitao Yang;Jun Teng
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.223-239
    • /
    • 2023
  • Geometric nonlinear performance simulation and analysis of complex modern buildings and industrial products require high-performance shell elements. Balancing multiple aspects of performance in the one geometric nonlinear analysis element remains challenging. We present a new shell element, flat shell DKMGQ-CR (Co-rotational Discrete Kirchhoff-Mindlin Generalized Conforming Quadrilateral), for linear and geometric nonlinear analysis of both thick and thin shells. The DKMGQ-CR shell element was developed by combining the advantages of high-performance membrane and plate elements in a unified coordinate system and introducing the co-rotational formulation to adapt to large deformation analysis. The effectiveness of linear and geometric nonlinear analysis by DKMGQ-CR is verified through the tests of several classical numerical benchmarks. The computational results show that the proposed new element adapts to mesh distortion and effectively alleviates shear and membrane locking problems in linear and geometric nonlinear analysis. Furthermore, the DKMGQ-CR demonstrates high performance in analyzing thick and thin shells. The proposed element DKMGQ-CR is expected to provide an accurate, efficient, and convenient tool for the geometric nonlinear analysis of shells.

Large Scale Stabilized Finite Element Simulation and Modeling for Environmental Flows in Urban Area

  • Kashiyama Kazuo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.21-26
    • /
    • 2006
  • A large-scale finite element simulation and modeling method is presented for environmental flows in urban area. Parallel stabilized finite element method based on domain decomposition method is employed for the numerical simulation. Several GIS and CAD data are used for the preparation of the shape model for landform and urban structures. The present method Is applied to the simulation of flood flow and wind flow In urban area. The present method is shown to be a useful planning and design tool for the natural disasters and the change of environments in urban area.

  • PDF

Strength and stiffness of cold-formed steel portal frame joints using quasi-static finite element analysis

  • Mohammadjani, Chia;Yousefi, Amir M.;Cai, Shu Qing;Clifton, G. Charles;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.727-734
    • /
    • 2017
  • This paper describes a quasi-static finite element analysis, which uses the explicit integration method, of the apex joint of a cold-formed steel portal frame. Such cold-formed steel joints are semi-rigid as a result of bolt-hole elongation. Furthermore, the channel-sections that are being connected have a reduced moment capacity as a result of a bimoment. In the finite element model described, the bolt-holes and bolt shanks are all physically modelled, with contact defined between them. The force-displacement curves obtained from the quasi-static analysis are shown to be similar to those of the experimental test results, both in terms of stiffness as well as failure load. It is demonstrated that quasi-static finite element analysis can be used to predict the behavior of cold-formed steel portal frame joints and overcome convergence issues experienced in static finite element analysis.

Analysis of RC beams subjected to shock loading using a modified fibre element formulation

  • Valipour, Hamid R.;Huynh, Luan;Foster, Stephen J.
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.377-390
    • /
    • 2009
  • In this paper an improved one-dimensional frame element for modelling of reinforced concrete beams and columns subjected to impact is presented. The model is developed in the framework of a flexibility fibre element formulation that ignores the shear effect at material level. However, a simple shear cap is introduced at section level to take account of possible shear failure. The effect of strain rate at the fibre level is taken into account by using the dynamic increase factor (DIF) concept for steel and concrete. The capability of the formulation for estimating the element response history is demonstrated by some numerical examples and it is shown that the developed 1D element has the potential to be used for dynamic analysis of large framed structures subjected to impact of air blast and rigid objects.

Modelling time-dependent cracking in reinforced concrete using bond-slip Interface elements

  • Chong, Kak Tien;Gilbert, R. Ian;Foster, Stephen J.
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.151-168
    • /
    • 2004
  • A two-dimensional nonlinear finite element model is developed to simulate time-dependent cracking of reinforced concrete members under service loads. To predict localized cracking, the crack band model is employed to model individual crack opening. In conjunction with the crack band model, a bond-interface element is used to model the slip between concrete and reinforcing steel permitting large slip displacements between the concrete element nodes and the steel truss element nodes at crack openings. The time-dependent effects of concrete creep and shrinkage are incorporated into the smeared crack model as inelastic pre-strains in an iterative solution procedure. Two test examples are shown to verify the finite element model with good agreement between the model and the observed test results.

Innovative displacement-based beam-column element with shear deformation and imperfection

  • Tang, Yi-Qun;Ding, Yue-Yang;Liu, Yao-Peng;Chan, Siu-Lai;Du, Er-Feng
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.75-90
    • /
    • 2022
  • The pointwise equilibrium polynomial (PEP) element considering local second-order effect has been widely used in direct analysis of many practical engineering structures. However, it was derived according to Euler-Bernoulli beam theory and therefore it cannot consider shear deformation, which may lead to inaccurate prediction for deep beams. In this paper, a novel beam-column element based on Timoshenko beam theory is proposed to overcome the drawback of PEP element. A fifth-order polynomial is adopted for the lateral deflection of the proposed element, while a quadric shear strain field based on equilibrium equation is assumed for transverse shear deformation. Further, an additional quadric function is adopted in this new element to account for member initial geometrical imperfection. In conjunction with a reliable and effective three-dimensional (3D) co-rotational technique, the proposed element can consider both member initial imperfection and transverse shear deformation for second-order direct analysis of frame structures. Some benchmark problems are provided to demonstrate the accuracy and high performance of the proposed element. The significant adverse influence on structural behaviors due to shear deformation and initial imperfection is also discussed.

Finite element model updating of Canton Tower using regularization technique

  • Truong, Thanh Chung;Cho, Soojin;Yun, Chung Bang;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.459-470
    • /
    • 2012
  • This paper summarizes a study for the modal analysis and model updating conducted using the monitoring data obtained from the Canton Tower of 610 m tall, which was established as an international benchmark problem by the Hong Kong Polytechnic University. Modal properties of the tower were successfully identified using frequency domain decomposition and stochastic subspace identification methods. Finite element model updating using the measurement data was further performed to reduce the modal property differences between the measurements and those of the finite element model. Over-fitting during the model updating was avoided by using an optimization scheme with a regularization term.

The Boundary Element Analysis of Wave Force acting on Multiple Cylinders

  • Kim, Nam-Hyeong;Cao, Tan Ngooc Than;Yang, Soon-Bo
    • Journal of Navigation and Port Research
    • /
    • v.36 no.7
    • /
    • pp.561-569
    • /
    • 2012
  • In this paper, the boundary element method is applied to solve the diffraction of waves by multiple vertical cylinders under the assumption of linear wave theory. A numerical analysis by boundary element method is based on Green's theorem and introduced to an integral equation for the fluid velocity potential around the cylinders. The numerical results obtained in this study are compared with the experimental data and the results of the theory using multiple scattering techniques. The comparisons show strong agreement. This numerical analysis method developed by using boundary element method could be used broadly for the design of various offshore structures to be constructed in coastal zones in the future.

Bond-slip effect in steel-concrete composite flexural members: Part 1 - Simplified numerical model

  • Lee, WonHo;Kwak, Hyo-Gyoung;Hwang, Ju-young
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.537-548
    • /
    • 2019
  • This paper introduces an improved numerical model which can consider the bond-slip effect in steel-concrete composite structures without taking double nodes to minimize the complexity in constructing a finite element model. On the basis of a linear partial interaction theory and the use of the bond link element, the slip behavior is defined and the equivalent modulus of elasticity and yield strength for steel is derived. A solution procedure to evaluate the slip behavior along the interface of the composite flexural members is also proposed. After constructing the transfer matrix relation at an element level, successive application of the constructed relation is conducted from the first element to the last element with the compatibility condition and equilibrium equations at each node. Finally, correlation studies between numerical results and experimental data are conducted with the objective of establishing the validity of the proposed numerical model.

On boundary discretization and integration in frequency-domain boundary element method

  • Fu, Tia Ming;Nogami, Toyoaki
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.339-345
    • /
    • 1998
  • The computation size and accuracy in the boundary element method are mutually coupled and strongly influenced by the formulations in boundary discretization and integration. This aspect is studied numerically for two-dimensional elastodynamic problems in the frequency-domain. The localized nature of error is observed in the computed results. A boundary discretization criterion is examined. The number of integration points in the boundary integration is studied to find the optimum number for accuracy. Useful information is obtained concerning the optimization in boundary discretization and integration.