• Title/Summary/Keyword: Environmental dynamics

Search Result 1,356, Processing Time 0.031 seconds

Energy Efficiency Improvement and Field Scale Study of Crematory using Computation Fluid Dynamics (전산유동해석을 통한 화장로의 에너지 효율개선 및 실증연구)

  • Won, Yong-Tae;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.95-101
    • /
    • 2019
  • The cremation rate of Korea in 2016 was 82.7% which is four times greater than 20.5% in 1994. As increasing the cremation rate gradually, it cause a shortage of cremation facilities resulting in building more cremation facilities to meet the increasing inquiries on cremation or a large amount of fuels for the longer operation of the crematory. In this study, the crematory system optimizing its thermal efficiency characteristics and also responding to increasing inquiries on cremation was proposed in order for solving such problems, In particular, the heat flow characteristics including a heat transfer coefficient by performing a simulation using computational fluid dynamics (CFD) was investigated. The CFD model was validated with on-site experiments for a cremation facility. As a result of the simulation, the fuel consumption decreased nearly 25% and residence time increased in the main combustor. Also, the improved crematory was constructed with an expanded combustor, heat exchanger, second combustion air system, refractory and insulation material. From on-site experiments, the energy consumption was saved to approximately 54.4%, while the burning time reduced nearly 20 minutes.

Modeling of Sediment and Phosphorous Transport in a River Channel (하천 내 유사와 인 이동에 관한 모델링)

  • Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.332-342
    • /
    • 2010
  • A model has been developed to investigate in-river sediment and phosphorus dynamics. This advective-dispersive model is coupled with hydrodynamics and sediment transport submodels to simulate suspended sediment, total dissolved phosphorus, total phosphorus, and particulate phosphorus concentrations under unsteady flow conditions. It emphasizes sediment and phosphorus dynamics in unsteady flow conditions, in which the study differs from many previous solute transport studies, conducted in relatively steady flow conditions. The diffusion wave approaximation was employed for unsteady flow simulations. The first-order adsorption and linear adsorption isotherm model was used on the basis of the three-layered riverbed submodel with riverbed sediment exchange and erosion/deposition processes. Various numerical methods were tested to select a method that had minimal numerical dispersion under unsteady flow conditions. The responses of the model to the change of model parameter values were tested as well.

Modeling of LULC Dynamics in Bekasi District-Indonesia by Linking NDVI Measurement and Socio-Economic Indicators

  • Mustafa, Adi Junjunan;Tateishi, Ryutaro
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.516-518
    • /
    • 2003
  • This study discusses an effort to build a model to link normalized difference vegetation indices (NDVI) and socio-economic indicators derived from village survey (1990, 1993, 1996, and 2000) statistical data in Bekasi, West Java, Indonesia. Socio-economics indicators of sub-district level, in this study the number of agricultural households (AH), are aggregated from village level data. NDVI from Landsat-TM resolution data (1989 and 1997) are computed to detect land use/land cover (LULC) dynamics in the sub-district areas. Attention is mainly paid on the examination of agricultural land cover changing in the sub-district level. NDVI measurements might be used to predict AH dynamics as showed by computed linear regression models.

  • PDF

Computational fluid dynamics simulation of pedestrian wind in urban area with the effects of tree

  • Chang, Cheng-Hsin
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.147-158
    • /
    • 2006
  • The purpose of this paper is to find a more accurate method to evaluate pedestrian wind by computational fluid dynamics approach. Previous computational fluid dynamics studies of wind environmental problems were mostly performed by simplified models, which only use simple geometric shapes, such as cubes and cylinders, to represent buildings and structures. However, to have more accurate and complete evaluation results, various shapes of blocking objects, such as trees, should also be taken into consideration. The aerodynamic effects of these various shapes of objects can decrease wind velocity and increase turbulence intensity. Previous studies simply omitted the errors generated from these various shapes of blocking objects. Adding real geometrical trees to the numerical models makes the calculating domain of CFD very complicated due to geometry generation and grid meshing problems. In this case the function of Porous Media Condition can solve the problem by adding trees into numerical models without increasing the mesh grids. The comparison results between numerical and wind tunnel model are close if the parameters of porous media condition are well adjusted.

특허 데이터를 활용한 정보통신 산업혁신체제의 역동성 분석

  • Kim, Jin-Yong;Jeong, Jae-Yong
    • Journal of Technology Innovation
    • /
    • v.11 no.2
    • /
    • pp.283-314
    • /
    • 2003
  • The transformation of sector system in Information and Communications Technology (ICT), a prominent character in sector system, has been paid much attention in innovation theory with rapid change in information technologies and technological environment. In this context, we explore how Sectoral Innovation System (SIS) in ICT has been transformed since 1970 by employing US patent data and Proxy variables which measures the basic elements for SIS and its technological characteristics. By utilizing patent data, it is demonstrated that technological regimes, key links and Schumpeterian patterns of innovation in overall ICT sector have drastically transformed over the last three decades. We also reviewed how changes of knowledge bases and technological characteristics driving forces of dynamics in ICT help heterogeneous agents interact with environmental factors (Industrial structure and institutions), leading to industrial or economic growth and its dynamics in the historical perspective over ICT sector (Telecommunication, Computer and Semiconductor). Consequently, our research shows clearly that Schumpeterian patterns of innovation have shifted from Mark I to Mark II in ICT. Our study also provides a glimpse picture of dynamics patent data.

  • PDF

An alternative upstream method for the Zhelamuqing tailings impoundment construction of a Copper Mine in China

  • Wei, Zuoan;Chen, Yulong;Yin, Guangzhi;Yang, Yonghao;Shu, Weimin
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.383-392
    • /
    • 2019
  • How to safely and economically dispose mining tailings is a challenge to mine operators. This paper presents an alternative upstream method for tailings dam construction, termed as the template construction method (TCM), which has been successfully implemented at Zhelamuqing tailings impoundment since 2004. By the beginning of 2015, the tailings dam wall had reached 95 m in height for the 46 upstream raises, with the total height of the dam including the starter dyke being 128 m. The proposed TCM is relatively simple and cost-effective and provides a good way for constructing rapidly raising tailings dam based on this case.

Equilibria and Dynamics of Toluene and Trichloroethylene onto Activated Carbon Fiber

  • Park, Jee-Won;Lee, Young-Whan;Choi, Dae-Ki;Lee, Sang-Soon
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.93-99
    • /
    • 2002
  • Adsorption dynamics for toluene and trichloroethylene with an isothermal fixed bed of activated carbon fiber were investigated. Equilibrium isotherms were measured by a static method for toluene and trichloroethylene onto activated carbon fiber at temperatures of 298, 323, and 348 K and pressure up to 3 kPa for toluene and 6 kPa for trichloroethylene, respectively. These results were correlated by the Toth equation. And dynamic experiments in an isothermal condition of 298 K were examined. Breakthrough curves reflected the effects of the experimental variables such as partial pressures for adsorbate and interstitial bulk velocities of gas flow. To present the column dynamics, a dynamic model based on the linear driving force (LDF) mass transfer model was applied.

  • PDF

Machine Learning Application to the Korean Freshwater Ecosystems

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Chon, Tae-Soo;Joo, Gea-Jae
    • The Korean Journal of Ecology
    • /
    • v.28 no.6
    • /
    • pp.405-415
    • /
    • 2005
  • This paper considers the advantage of Machine Learning (ML) implemented to freshwater ecosystem research. Currently, many studies have been carried out to find the patterns of environmental impact on dynamics of communities in aquatic ecosystems. Ecological models popularly adapted by many researchers have been a means of information processing in dealing with dynamics in various ecosystems. The up-to-date trend in ecological modelling partially turns to the application of ML to explain specific ecological events in complex ecosystems and to overcome the necessity of complicated data manipulation. This paper briefly introduces ML techniques applied to freshwater ecosystems in Korea. The manuscript provides promising information for the ecologists who utilize ML for elucidating complex ecological patterns and undertaking modelling of spatial and temporal dynamics of communities.

Atelomix in Ethiopian Highland Lakes: their role in phytoplankton dynamics and ecological features

  • Solomon Wagaw;Assefa Wosnie;Yirga Enawgaw
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.7
    • /
    • pp.423-436
    • /
    • 2023
  • The objectives of this review were to synthesize the community structure of phytoplankton and the role of atelomix in the phytoplankton dynamics in Ethiopian highland lakes. Changes in a lake's physical structure, light dynamics, and availability of nutrients are closely associated with phytoplankton ecology, and phytoplankton assemblages provide insight into phytoplank- ton responses to these environmental changes. Based on the available information, a total of 173 species of phytoplankton are grouped under seven classes, Chlorophyceae (80 taxa), Bacillariophyceae (55 taxa), Cyanophyceae (24 taxa), Dinophyceae (6 taxa), Eugleonophyceae (6 taxa), Xanthophyceae (1 taxon), and Cryptophyceae (1 taxon) were recorded in five different tropical Ethiopian highland lakes. Chlorophyceae and Bacillariophyceae dominated in terms of species composition. Partial atelomixis, seasonality, and low nutrient concentrations seem to be the main drivers in structuring phytoplankton composition and abun-dances in Ethiopian highland lakes, characterized by a high diversity of atelomix-dependent benthic diatoms and desmids. Thus, this review will help understand the role of atelomix and nutrient availability in the phytoplankton composition and biomass of tropical highland lakes of Ethiopia.

Nonlinear dynamics of an adaptive energy harvester with magnetic interactions and magnetostrictive transduction

  • Pedro V. Savi;Marcelo A. Savi
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.281-290
    • /
    • 2024
  • This work investigates the mechanical energy harvesting from smart and adaptive devices using magnetic interactions. The energy harvester is built from an elastic beam connected to an electric circuit by a magnetostrictive material that promotes energy transduction. Besides, magnetic interactions define the system stability characterizing multistable configurations. The adaptiveness is provided by magnets that can change their position with respect to the beam, changing the system configuration. A mathematical model is proposed considering a novel model to describe magnetic interactions based on the single-point magnet dipole method, but employing multiple points to represent the magnetic dipole, which is more effective to match experimental data. The adaptive behavior allows one to alter the system stability and therefore, its dynamical response. A nonlinear dynamics analysis is performed showing the possibilities to enhance energy harvesting capacity from the magnet position change. The strategy is to perform a system dynamical characterization and afterward, alter the energetic barrier according to the environmental energy sources. Results show interesting conditions where energy harvesting capacity is dramatically increased by changing the system characteristics.