• 제목/요약/키워드: Environmental durability

검색결과 835건 처리시간 0.037초

Durability of Photocatalytic Cement after Nitric Oxide-Wet-Dry Cycling

  • Lee, Bo Yeon;Kurtis, Kimberly E.
    • 한국건축시공학회지
    • /
    • 제14권4호
    • /
    • pp.359-368
    • /
    • 2014
  • Photocatalytic cement has been receiving attention due to its high oxidation power that reduces nitrogen oxide, thus contributing to a clean atmospheric environment. However, there has not yet been a thorough investigation on the effect of photocatalytic reactions on the durability of cementitious material, the parent material. In this study, photocatalytic cement samples were exposed to nitric oxide gas and UV along with cycles of wetting and drying to simulate environmental conditions. The surface of samples was characterized mechanically, chemically, and visually during the cycling. The results indicate that that the photocatalytic efficiency decreased with continued NO oxidation. The pits found from SEM indicated that chemical deterioration, such as acid attack or leaching, did occur. However, this was not confirmed by X-ray diffraction. The hardness was not affected, probably due to the formation of CSH as evidenced by the XRD pattern. In conclusion, it was found that photocatalysis could alter cementitious materials both chemically and mechanically, which could further affect long-term durability.

폐광미-소석회 고화체의 동결융해 내구성에 관한 연구 (Durability of the Solidified Mine Tailing-Hydrated Lime Mixture Against Repeated Freezing and Thawing)

  • 민경원;이현철;김태풍
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.65-69
    • /
    • 2008
  • The tailings piled in abandoned mines are well-known potential sources of soil contamination. Hydrated limes were applied as cementing materials to solidify heavy metal contaminated tailings for the purpose of reducing their toxicity and migration rates. The optimum mixing ratio of tailings, hydrated lime, and water was determined through a preliminary test. The mixtures of mine tailings and hydrated lime solidified through pozzolanic reaction were tested for their durability against repeated freezing and thawing processes. After repeated freezing and thawing, the uniaxial compressive strengths of all the solidified mixture specimens decreased in comparison with those before test but still higher than $3.5kgf/cm^2$, the standard recommended for land reclamation solids by EPA(Environmental Protection Agency), which suggested that hydrated lime be a potential material to treat the abandoned mine tailings for the environmental purpose.

  • PDF

보존용지의 요구 특성 및 국내산 인쇄용지의 보존성 평가 (The Requirements for Permanent Paper and Evaluation of Permanence of Domestic Printing and Writing Papers)

  • 윤혜정;조휘
    • 펄프종이기술
    • /
    • 제40권2호
    • /
    • pp.73-79
    • /
    • 2008
  • The permanence is of great importance to library and archival paper. According to the established standardizations including ISO and ANSI, the permanence can be specified with tear strength, pH, alkali reserve and kappa number. In this study, we evaluated the permanence and durability of domestic coated and copy paper grades. Two types of coated paper grades and all kinds of copy papers which were tested in this study were satisfied with the criterion of permanence specification. However, all of the tested paper grades didn't meet the requirements of durability because of their low folding endurance.

Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete

  • Joshaghani, Alireza;Moeini, Mohammad Amin;Balapour, Mohammad
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.241-255
    • /
    • 2017
  • Concrete is known to be the most used construction material worldwide. The environmental and economic aspects of Ordinary Portland Cement (OPC) containing concrete have led research studies to investigate the possibility of incorporating supplementary cementitious materials (SCMs) in concrete. Metakaolin (MK) is one SCM with high pozzolanic reactivity generated throughout the thermal activation of high purity kaolinite clay at a temperature ranging from $500^{\circ}C$ to $800^{\circ}C$. Although many studies have evaluated the effect of MK on mechanical properties of concrete and have reported positive effects, limited articles are considering the effect of MK on durability properties of concrete. Considering the lifetime assessment of concrete structures, the durability of concrete has become of particular interest recently. In the present work, the influences of MK on mechanical and durability properties of concrete mixtures are evaluated. Various experiments such as slump flow test, compressive strength, water permeability, freeze and thaw cycles, rapid chloride penetration and surface resistivity tests were carried out to determine mechanical and durability properties of concretes. Concretes made with the incorporation of MK revealed better mechanical and durability properties compared to control concretes due to combined pozzolanic reactivity and the filler effect of MK.

디젤차량 요소수탱크의 진동 특성을 고려한 진동내구시험법 연구 (Study of Vibration Fatigue Test for Urea Tank of Diesel Vehicle Considering Vibration Characteristics)

  • 윤지수
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권3호
    • /
    • pp.213-219
    • /
    • 2018
  • Purpose: Satisfying the environmental regulations, the automobile manufacturer should install urea tank, which is a key component of the urea system. However, due to the limitations of existing layouts, it may be mounted which is disadvantageous to vibration and shock resulting in durability robust. analyze the factors affecting the durability life of urea tank and the vibration characteristics through RLDA. In this study, clarify the limit of the current practice test method of urea tank and analyze the possibility of the new vibration test method in the system unit reflecting the characteristics of actual use condition. Methods: Analyzing the factors affecting the durability life of urea tank and the vibration characteristics through PSD & FDS of RLDA that actual vehicle driving data on durability test road. Results: The limit of the uniform width/single frequency test method of urea tank is clarifed and the positive prospects of the new test method are discovered. Conclusion: The vibration durability test with PSD method in system unit effectively reflects the magnitude and frequency characteristics of field vibration.

Mechanical properties and durability of self consolidating cementitious materials incorporating nano silica and silica fume

  • Mahdikhani, Mahdi;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • 제14권2호
    • /
    • pp.175-191
    • /
    • 2014
  • In recent years, the emergence of nanotechnology and nanomaterial has created hopes to improve various properties of concrete. Nano silica as one of these materials has been introduced as a cement replacement material for concrete mixture in construction applications. It can modify the properties of concrete, due to high pozzolanic reactions and also making a denser microstructure. On the other hand, it is well recognized that the use of mineral admixtures such as silica fume affects the mechanical properties and durability of cementitious materials. In addition, the superior performance of self-consolidating concrete (SCC) and self-consolidating mortars (SCM) over conventional concrete is generally related to their ingredients. This study investigates the effect of nano silica and silica fume on the compressive strength and chloride permeability of self-consolidating mortars. Tests include compressive strength, rapid chloride permeability test, water permeability, capillary water absorption, and surface electrical resistance, which carried out on twenty mortar mixtures containing zero to 6 percent of nano silica and silica fume. Results show that SCMs incorporating nano silica had higher compressive strength at various ages. In addition, results show that nano silica has enhanced the durability SCMs and reduced the chloride permeability.

Degradation mechanisms of concrete subjected to combined environmental and mechanical actions: a review and perspective

  • Ye, Hailong;Jin, Nanguo
    • Computers and Concrete
    • /
    • 제23권2호
    • /
    • pp.107-119
    • /
    • 2019
  • In-service reinforced concrete structures are simultaneously subjected to a combination of multi-deterioration environmental actions and mechanical loads. The combination of two or more deteriorative actions in environments can potentially accelerate the degradation and aging of concrete materials and structures. This paper reviews the coupling and synergistic mechanisms among various deteriorative driving forces (e.g. chloride salts- and carbonation-induced reinforcement corrosion, cyclic freeze-thaw action, alkali-silica reaction, and sulfate attack). In addition, the effects of mechanical loads on detrimental environmental factors are discussed, focusing on the transport properties and damage evolution in concrete. Recommendations for advancing current testing methods and predictive modeling on assessing the long-term durability of concrete with consideration of the coupling effects are provided.

Prediction of calcium leaching resistance of fly ash blended cement composites using artificial neural network

  • Yujin Lee;Seunghoon Seo;Ilhwan You;Tae Sup Yun;Goangseup Zi
    • Computers and Concrete
    • /
    • 제31권4호
    • /
    • pp.315-325
    • /
    • 2023
  • Calcium leaching is one of the main deterioration factors in concrete structures contact with water, such as dams, water treatment structures, and radioactive waste structures. It causes a porous microstructure and may be coupled with various harmful factors resulting in mechanical degradation of concrete. Several numerical modeling studies focused on the calcium leaching depth prediction. However, these required a lot of cost and time for many experiments and analyses. This study presents an artificial neural network (ANN) approach to predict the leaching depth quickly and accurately. Totally 132 experimental data are collected for model training and validation. An optimal ANN model was proposed by ANN topology. Results indicate that the model can be applied to estimate the calcium leaching depth, showing the determination coefficient of 0.91. It might be used as a simulation tool for engineering problems focused on durability.

Durability Properties and Microstructure of Ground Granulated Blast Furnace Slag Cement Concrete

  • Divsholi, Bahador Sabet;Lim, Tze Yang Darren;Teng, Susanto
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권2호
    • /
    • pp.157-164
    • /
    • 2014
  • Ground granulated blast-furnace slag (GGBS) is a green construction material used to produce durable concrete. The secondary pozzolanic reactions can result in reduced pore connectivity; therefore, replacing partial amount of Portland cement (PC) with GGBS can significantly reduce the risk of sulfate attack, alkali-silica reactions and chloride penetration. However, it may also reduce the concrete resistance against carbonation. Due to the time consuming process of concrete carbonation, many researchers have used accelerated carbonation test to shorten the experimental time. However, there are always some uncertainties in the accelerated carbonation test results. Most importantly, the moisture content and moisture profile of the concrete before the carbonation test can significantly affect the test results. In this work, more than 200 samples with various water-cementitious material ratios and various replacement percentages of GGBS were cast. The compressive strength, electrical resistivity, chloride permeability and carbonation tests were conducted. The moisture loss and microstructure of concrete were studied. The partial replacement of PC with GGBS produced considerable improvement on various properties of concrete.

직물형 ECG센서 설계를 위한 제직구조 및 내구성에 대한 기초연구 (Basic Study of Weaving Structure and Durability for Fabric-type ECG Sensor Design)

  • 류종우;지영주;김홍제;윤남식
    • 한국염색가공학회지
    • /
    • 제23권3호
    • /
    • pp.219-226
    • /
    • 2011
  • Recently, study of functional clothing for vital sensing is focused on improving conductivity and decreasing resistance, in order to enhance the electrocardiogram(ECG) sensing accuracy and obtained stable environmental durability on operation condition. In this study, four ECG fabrics that having different componnt yarns and weaving structures were produced to analyze their environmental durabilities and electric properties under general operation conditions including different physical and chemical stimulation. For outstanding electric properties and physical properties, the optimized ECG sensing fabric should consist of a fabric of 2 up 3 down twill structure containing 210de silver-coated conductive yarns and polyester yarn in warp and weft directions respectively. The selected fabric has $0.11{\Omega}$ which is relative lower resistance than otherwisely produced fabrics under ECG measurement condition. And it has 7% stable resistance changes under 25% strain and repeated strain.