• 제목/요약/키워드: Environmental corrosion testing

검색결과 48건 처리시간 0.023초

Proposed Guidelines for Selection of Methods for Erosion-corrosion testing in Flowing Liquids

  • Matsumura, Masanobu
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.291-296
    • /
    • 2007
  • The corrosion of metals and alloys in flowing liquids can be classified into uniform corrosion and localized corrosion which may be categorized as follows. (1) Localized corrosion of the erosion-corrosion type: the protective oxide layer is assumed to be removed from the metal surface by shear stress or turbulence of the fluid flow. A macro-cell may be defined as a situation in which the bare surface is the macro-anode and the other surface covered with the oxide layer is the macro-cathode. (2) Localized corrosion of the differential flow-velocity corrosion type: at a location of lower fluid velocity, a thin and coarse oxide layer with poor protective qualities may be produced because of an insufficient supply of oxygen. A macro-cell may be defined as a situation in which this surface is the macro-anode and the other surface covered with a dense and stable oxide layer is the macro-cathode. (3) Localized corrosion of the active/passive-cell type: on a metal surface a macro-cell may be defined as a situation in which a part of it is in a passivation state and another in an active dissolution state. This situation may arise from differences in temperature as well as in the supply of the dissolved oxygen. Compared to uniform corrosion, localized corrosion tends to involve a higher wall thinning rate (corrosion rate) due to the macro-cell current as well as to the ratio of the surface area of the macro-anode to that of the macro-cathode, which may be rationalized using potential vs. current density diagrams. The three types of localized corrosion described above can be reproduced in a Jet-in-slit test by changing the flow direction of the test liquid and arranging environmental conditions in an appropriate manner.

도시철도차량 구조물에 대한 부식측정기법 적용 및 평가방안 연구 (A Study on Corrosion Measurement Techniques and Evaluation for Structure of EMU)

  • 정종덕;편장식;홍용기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.931-938
    • /
    • 2011
  • Nondestructive inspection(NDI) is a testing procedure used to easily inspect an object for internal defects, abnormalities, shape, and structure, etc. without destroying it. Typical candidates for NDI include buildings, railways, aircraft, bridges, underground pipelines and various types of factory equipment. Recent advances in nondestructive evaluation(NDE) technologies have led to improved methods for quality control and in-service inspection, and the development of new options for material diagnostics. Under frame side sill in rolling stocks is designed for preventing corrosion in order to meet mechanical requirements. However during long operation time, there are corrosion in the under frame side sill caused by environmental effect, vibration and etc. This paper introduces the methods of a survey and assessment on NDI applications in Electric Multiple Units(EMU). The main objective of this paper was to obtain information on various applications and evaluation of NDI technology in EMU.

  • PDF

촉매성 산화물 전극 (DSA, Dimensionally Stable Anode)의 가속수명 테스트 방법과 장치에 관한 기초 연구 (A Basic Study on Accelerated Life Test Method and Device of DSA (Dimensionally Stable Anode) Electrode)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제27권6호
    • /
    • pp.467-475
    • /
    • 2018
  • The lifetime of the electrode is one of the most important factors on the stability of the electrode. Since the lifetime of the DSA (Dimensionally stable anode) electrode is long, an accelerated lifetime test is required to reduce the test time. Beacuse there is no basis or standard method for accelerated lifetime testing, many researchers use different methods. Therefore, there is a need for basis and methods for accelerated lifetime testing that other researchers can follow. We designed a reactor system for accelerated lifetime testing and planned specific methods. Reactor system was circulating batch reactor. Reactor volume and cooling water tank were 12.5 L and 100 L, respectively. Electrode size was $2cm{\times}3cm$ (real electrolysis area, $5cm^2$). In order to maintain the harsh conditions, accelerated lifetime test was carried out in a high current density ($0.6A/cm^2$) and low electrolyte concentration (NaCl, 0.068 mol/L). Maintaining a constant temperature was an important operation parameter for exact accelerated lifetime test. As the accelerated lifetime test progressed, the active component of electrode surface was consumed and desorption occurred. At the point of 5 V rise, corrosion of the surface of the base material(titanium) also started.

Correlation Between Bulk and Surface Resistivity of Concrete

  • Ghosh, Pratanu;Tran, Quang
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.119-132
    • /
    • 2015
  • Electrical resistivity is an important physical property of portland cement concrete which is directly related to chloride induced corrosion process. This study examined the electrical surface resistivity (SR) and bulk electrical resistivity (BR) of concrete cylinders for various binary and ternary based high-performance concrete (HPC) mixtures from 7 to 161 days. Two different types of instruments were utilized for this investigation and they were 4 point Wenner probe meter for SR and Merlin conductivity tester for bulk resistivity measurements. Chronological development of electrical resistivity as well as correlation between two types of resistivity on several days was established for all concrete mixtures. The ratio of experimental surface resistance to bulk resistance and corresponding resistivity was computed and compared with theoretical values. Results depicted that bulk and SR are well correlated for different groups of HPC mixtures and these mixtures have attained higher range of electrical resistivity for both types of measurements. In addition, this study presents distribution of surface and bulk resistivity in different permeability classes as proposed by Florida Department of Transportation (FDOT) specification from 7 to 161 days. Furthermore, electrical resistivity data for several HPC mixtures and testing procedure provide multiple promising options for long lasting bridge decks against chloride induced corrosion due to its ease of implementation, repeatability, non-destructive nature, and low cost.

Corrosion fatigue crack growth behavior of 316LN stainless steel in high-temperature pressurized water

  • Zhang, Ziyu;Tan, Jibo;Wu, Xinqiang;Han, En-Hou;Ke, Wei
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2977-2981
    • /
    • 2021
  • Corrosion fatigue crack growth (FCG) behavior of 316LN stainless steel was investigated in high-temperature pressurized water at different temperatures, load ratios (R = Kmax/Kmin) and rise times (tR). The environmental assisted effect on FCG rate was observed when both the R and tR exceeded their critical values. The FCG rate showed a linear relation with stress intensity factor range (ΔK) in double logarithmic coordinate. The environmental assisted effect on FCG rate depended on the ΔK and quantitative relations were proposed. Possible mechanisms of environmental assisted FCG rate under different testing conditions are also discussed.

Exploratory research on ultra-long polymer optical fiber-based corrosion sensing for buried metal pipelines

  • Luo, Dong;Li, Yuanyuan;Yang, Hangzhou;Sun, Hao;Chen, Hongbin
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.507-520
    • /
    • 2020
  • In order to achieve effective corrosion monitoring of buried metal pipelines, a Novel nondestructive Testing (NDT) methodology using ultra-long (250 mm) Polymer Optical Fiber (POF) sensors coated with the Fe-C alloy film is proposed in this study. The theoretical principle is investigated to clarify the monitoring mechanism of this method, and the detailed fabrication process of this novel POF sensor is presented. To validate the feasibility of this novel POF sensor, exploratory research of the proposed method was performed using simulated corrosion tests. For simplicity, the geometric shape of the buried pipeline was simulated as a round hot-rolled plain steel bar. A thin nickel layer was applied as the inner plated layer, and the Fe-C alloy film was coated using an electroless plating technique to precisely control the thickness of the alloy film. In the end, systematic sensitivity analysis on corrosion severity was further performed with experimental studies on three sensors fabricated with different metal layer thicknesses of 25 ㎛, 30 ㎛ and 35 ㎛. The experimental observation demonstrated that the sensor coated with 25 ㎛ Fe-C alloy film presented the highest effectiveness with the corrosion sensitivity of 0.3364 mV/g at Δm = 9.32 × 10-4 g in Stage I and 0.0121 mV/g in Stage III. The research findings indicate that the detection accuracy of the novel POF sensor proposed in this study is satisfying. Moreover, the simple fabrication of the high-sensitivity sensor makes it cost-effective and suitable for the on-site corrosion monitoring of buried metal pipelines.

오스테나이트계 스테인리스강 노내 구조물의 조사유기응력부식균열 영향 인자에 대한 통계적 분석 (Statistical Evaluation of Factors Affecting IASCC of Austenitic Stainless Steels for PWR Core Internals)

  • 김성우;황성식;김홍표
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.819-827
    • /
    • 2009
  • This work is concerned with a statistical analysis of factors affecting the irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels for core internals of pressurized water reactors (PWR). The microstructural and environmental factors were reviewed and critically evaluated by the statistical analysis. The Cr depletion at grain boundary was determined to have no significant correlation with the IASCC susceptibility. The threshold irradiation fluence of IASCC in a PWR was statistically calculated to decrease from 5.799 to 1.914 DPA with increase of temperature from 320 to $340^{\circ}C$. From the analysis of the relationship between applied stress and time-to-failure of stainless steel components based on an accelerated life testing model, it was found that B2 life of a baffle former bolt exposed to neutron fluence of 20 and 75 DPA was at least 2.5 and 0.4 year, respectively, within 95% confidence interval.

Degradation mechanisms of concrete subjected to combined environmental and mechanical actions: a review and perspective

  • Ye, Hailong;Jin, Nanguo
    • Computers and Concrete
    • /
    • 제23권2호
    • /
    • pp.107-119
    • /
    • 2019
  • In-service reinforced concrete structures are simultaneously subjected to a combination of multi-deterioration environmental actions and mechanical loads. The combination of two or more deteriorative actions in environments can potentially accelerate the degradation and aging of concrete materials and structures. This paper reviews the coupling and synergistic mechanisms among various deteriorative driving forces (e.g. chloride salts- and carbonation-induced reinforcement corrosion, cyclic freeze-thaw action, alkali-silica reaction, and sulfate attack). In addition, the effects of mechanical loads on detrimental environmental factors are discussed, focusing on the transport properties and damage evolution in concrete. Recommendations for advancing current testing methods and predictive modeling on assessing the long-term durability of concrete with consideration of the coupling effects are provided.

지하철 공사현장 환경하의 가시설 강재의 부식두께감소량 추정 (Evaluation of Corrosion Thickness Loss of Temporary Steel Members Exposed to A Subway Construction Site)

  • 김인태;전상혁;허정옥;정진환
    • 한국강구조학회 논문집
    • /
    • 제21권3호
    • /
    • pp.301-310
    • /
    • 2009
  • 가시설 구조물의 재료로 강재가 널리 사용되고 있으나, 방식처리가 실시되지 않아 부식손상으로 인한 내하력 저하가 우려된다. 그러나 환경조건과 사용기간에 따른 가시설 강재의 부식감소량이 제시되어 있지 않아, 가시설 강재의 설계시 부식손상을 고려한 정량적인 내하력 및 장기 안전성 평가가 곤란한 실정이다. 본 연구에서는 가혹한 대기부식환경인 지하철 공사현장을 대상으로 가시설 강재의 장기 안전성 평가에 필요한 부식 두께감소량 예측식을 제안하기 위하여, 실내부식실험과 현장노출실험을 실시하였다. 실내부식실험에서는 상대습도와 염화칼슘이 강재의 부식손상에 미치는 영향을 검토하였으며, 현장노출실험에서는 실제 지하철 공사현장 환경하에 놓인 가시설 강재의 부식두께감소량을 측정하였다. 그 결과 11개월간의 현장노출실험을 통하여 환경조건과 사용기간에 따른 가시설 강재의 부식두께감소량 예측식을 제안하였다. 그리고 6개월간의 실내 부식실험을 통하여 부식영향인자인 상대습도와 염화칼슘에 따른 부식두께감소량 예측식을 제안하였다.

배관부 부식 및 결함 평가를 위한 레이저 유도 초음파 적용 기술 (Application of Laser-based Ultrasonic Technique for Evaluation of Corrosion and Defects in Pipeline)

  • 최상우;이준현;조윤호
    • 비파괴검사학회지
    • /
    • 제25권2호
    • /
    • pp.95-102
    • /
    • 2005
  • 원자력 발전소의 많은 배관부는 고온, 고압환경에서 적용되고 있어 환경적 및 기계적 요인에 의하여 부식결함이 빈번히 발생하고 있다. 이와 같은 부식 결함은 초음파 기법 등에 의하여 평가되어야 하고, 본 연구에서는 주사형 레이저 유도 초음파(SLS) 기법을 도입하여 배관부 부식결함의 영상화 기법을 적용하였다. 본 기법은 표면이 거칠거나 배관재와 같은 곡면의 표면에서 적용할 수 있는 장점이 있다. 한편 기존의 주사형 초음파 기법은 초음파 센서와 검사대상체 사이의 초음파 전달 매개체를 확보하기 위하여 시험편이 수침되거나 워터젯을 이용하였으나 주사형 레이저 초음파 기법은 광학적 기법을 이용하여 초음파를 발생시키므로 비접촉 방법에 의한 주사 이미지 획득이 가능하다. 따라서 본 주사형 레이저 초음파 기법은 복잡한 구조물의 검사, 비접촉 원격 및 고화질의 결함 이미지 탐상이 가능하다. 본 연구에서는 배관 결함의 검출능 향상을 위하여 결함 영상 획득에 있어서 다양한 조건의 레이저 유도 초음파 발생 기법을 적용하였고, 배관에 존재하는 응력부식 균열의 결함 영상을 얻게 되었다.