• Title/Summary/Keyword: Environmental characteristics

Search Result 16,846, Processing Time 0.058 seconds

History and Future Direction for the Development of Rice Growth Models in Korea (벼 작물생육모형 국내 도입 활용과 앞으로의 연구 방향)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Baek, Jaekyeong;Cho, Chongil;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.167-174
    • /
    • 2019
  • A process-oriented crop growth model can simulate the biophysical process of rice under diverse environmental and management conditions, which would make it more versatile than an empirical crop model. In the present study, we examined chronology and background of the development of the rice growth models in Korea, which would provide insights on the needs for improvement of the models. The rice crop growth models were introduced in Korea in the late 80s. Until 2000s, these crop models have been used to simulate the yield in a specific area in Korea. Since then, improvement of crop growth models has been made to take into account biological characteristics of rice growth and development in more detail. Still, the use of the crop growth models has been limited to the assessment of climate change impact on crop production. Efforts have been made to apply the crop growth model, e.g., the CERES-Rice model, to develop decision support system for crop management at a farm level. However, the decision support system based on a crop growth model was attractive to a small number of stakeholders most likely due to scarcity of on-site weather data and reliable parameter sets for cultivars grown in Korea. The wide use of the crop growth models would be facilitated by approaches to extend spatial availability of reliable weather data, which could be either measured on-site or estimates using spatial interpolation. New approaches for calibration of cultivar parameters for new cultivars would also help lower hurdles to crop growth models.

Form and Embryonic Characteristics of Pedicularis hallaisanensis Seeds As Endangered Wild Species II-Class Using Host Plants (숙주식물을 활용한 멸종위기야생식물II급 한라송이풀 종자의 형태 및 발아특성)

  • Kim, Lim-Kyu;Park, Eun-Hee;Gang, GeunHye;Hwang, Boo-Yeong;Jung, Hyun-Jin;Kim, Min-Yong;Park, Jeong-geun;Park, Sam-Bong;Kim, Bong-Gyu;Choo, Gab-Chul
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.290-295
    • /
    • 2019
  • This study was carried out to investigate the possibility of establishing a reproductive system for the seed of Pedicularis hallaisanensis, which is in the endangered wild species II class in Korea. The seed of P. hallaisanensis is egg-shaped, and the seed coat is dark brown. The embryo was identified as a dwarf type by the seed section. The seed length was $0.47{\pm}0.07mm$, width $0.16{\pm}0.006mm$, and thickness $0.12{\pm}0.01mm$. The weight of one seed was $0.0003{\pm}0.0001mg$, and 1000 seeds weighed $4.59{\pm}0.02mg$. The degree of seed viability was 75.33% by the tetrazolium (TZ) assay. The highest germination rate of P. hallaisanensis seed was 71% after 4 weeks of storage at $4^{\circ}C$. However, the germination rate tended to decrease gradually over a longer storage period. The germination rates after 6 or 8 weeks of storage at $4^{\circ}C$ were 64% and 60%, respectively. We used two host plants, Artemisia princeps and Dendranthema zawadskii, to determine the effect of host plants on P. hallaisanensis seed germination. The germination of P. hallaisanensis mixed with A. princeps or D. zawadskii started at 53.5 and 62.5 days after sowing, respectively. We did not find any germination 164 days postsowing with both host plants. When A. princeps and D. zawadskii were used as host plants for P. hallaisanensis seed germination, P. hallaisanensis seed germination rates were 45.5% and 19.5%, respectively. The average time to germination was 70.2 days for A. princeps, and 46.8 days for D. zawadskii.

The Vegetation Effect of under Neutralizing Layer Type on the Acid Drainage Slope (산성배수 비탈면의 중화층 종류에 따른 녹화효과)

  • Cho, Sung Rok;Kim, Jae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.493-503
    • /
    • 2019
  • This study is composed of nine treatments [Control : "no neutralizing layer+vegetation layer" 3 cm, Treatment 1 : "no neutralizing layer+vegetation layer" 5 cm, Treatment 2 : "no neutralizing layer+vegetation layer" 7 cm, Treatment 3 :"neutralizing layer (cement 3 %)+ vegetation layer (cement 1 %)" 3 cm, Treatment 4 : "neutralizing layer (cement 3 %)+vegetation layer (cement 1 %)" 5 cm, Treatment 5 : "neutralizing layer (cement 3 %)+vegetation layer (cement 1 %)" 7 cm, Treatment 6 : "neutralizing layer [$(Ca{\cdot}Mg)CO_3$] +vegetation layer" 3 cm, Treatment 7 : "neutralizing layer [$(Ca{\cdot}Mg)CO_3$]+vegetation layer" 5 cm, Treatment 8 : "neutralizing layer [$(Ca{\cdot}Mg)CO_3$]+vegetation layer" 7 cm] to find out the vegetation effects according to neutralizing layer types of the acid drainage slope. There were no significant differences observed in soil hardness and soil moisture content of neutralizing layer type while highly difference of moisture content was observed according to the neutralizing and vegetation layer thickness. As for soil acidity, strong acid was shown in the control, treatment 1 and treatment 2. Neutralizing effects were outstanding in treatments of 3, 4, 5 (cement treatment group), 6, 7 and 8 (limestone treatment group). Concerning plants growth characteristics, surface coverage rates, number of germinating woody plants, plant height, and plant root status, there were excellent effects observed in the experimental groups mixed with cement (treatments 3, 4 and 5) and limestone (treatments 6, 7 and 8). At the initial stage, however, plant roots were negatively affected in cement layer treatments of 3, 4 and 5. However, no difference was shown in each layer thickness on the acid drainage slope whereas 3~5 cm thickness neutralizing layer was appropriate in consideration of economic feasibility.

The Hydrochemistry of ChusanYongchulso Spring, Cheonbu-ri, Buk-myeon, Northern Ulleung Island (울릉도 북면 천부리 추산 용출소의 수질화학적 특성)

  • Lee, Byeong Dae;Cho, Byong Wook;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.565-582
    • /
    • 2018
  • We investigated the hydrochemical properties of ChusanYongchulso Spring located in Buk-myeon, Ulleung Island, focusing on the formation and characteristics of aquifers in and around the Nari caldera. Abundant pumice with high permeability and numerous fractures (including faults and joints) that formed as a result of caldera subsidence are widely distributed in the subsurface, favoring the formation of aquifers. Because of the presence of porous pyroclastic rocks with a high internal surface area, the water type of the springs is characterized by $NaHCO_3$, with upper stream waters and the upper spring being characterized by $NaHCO_3$ and NaCl, respectively. Components with a high coefficient of determination with EC are $HCO_3$, Na, F, Ca, Mg, Cl, $SiO_2$, and $SO_4$. The high concentrations of Na and Cl might be attributable to the main lithologies in the area, given that alkaline volcanic rocks are distributed extensively across Ulleung Island. Eh and pH, which are considered to be important indicators of water-rock interaction, are unrelated to most components. According to the results obtained from factor analysis, the variance explained by factor 1 is 54% and by factor 2 is 25.8%. Components with a high loading on factor 1 are F, Na, EC, Cl, $HCO_3$, $SO_4$, $SiO_2$, Ca, $NO_3$, and Mg, whereas components with a high loading on factor 2 are Mg and Ca, along with K, $NO_3$, and DO with negative loadings. It is suggested that the high concentrations of Na, Cl, F, and $SO_4$ are closely related to the presence of fine-grained alkaline pyroclastic rocks with high permeability and porosity, which favorintensewater-rock interaction. However, a wide-ranging investigation that encompasses methods such as geophysical prospecting and geochemical analysis (including isotope, trace-element, and tracer techniques) will be necessary to gain a better understanding of the groundwater chemistry, aquifer distribution, and water cycling of Ulleung Island.

Spatial and Temporal Variation of Phytoplankton Community in the Coastal Waters of Jeju Island (제주연안 식물플랑크톤 군집의 시공간적 변화)

  • KIM, GYU-BEOM;KANG, SU-MIN;LEE, JOON-BAEK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.92-105
    • /
    • 2019
  • Spatial and temporal characteristics of phytoplankton communities around the coastal waters of Jeju Island were investigated with environmental factors such as water temperature, salinity, and dissolved oxygen. Monthly samples were collected at 0 and 30 m depths of 10 stations from March 2015 to February 2016. During the survey period, water temperature ranged in 13.7~25.9 and $13.6{\sim}20.8^{\circ}C$ at 0 and 30 m, salinity in 31.51~34.47 and 33.03~34.47 psu at 0 and 30 m, and dissolved oxygen in 6.12~8.10 and $5.73{\sim}7.88mg\;L^{-1}$ at 0 and 30 m, respectively. Chlorophyll-a ranged in 0.28~2.48 and $0.44{\sim}1.01{\mu}g\;L^{-1}$ at 0 and 30 m, respectively. Phytoplankton abundance fluctuated in the range of $5,300{\sim}639,900cells\;L^{-1}$ during the year, showing the lowest in February at all stations, and the highest in July at the northern and western sea as well as in August at the southern and eastern sea of Jeju Island. A total of 362 species were occurred including 181 spp. of Bacillariophyta, 147 spp. of Dinophyta and 34 spp. of other phytoflagellates. Dominant species with occupancy rate over 20 percent of phytoplankton abundance showed apparent seasonal succession such as Paralia sulcata and Skeletonema costatum in spring and autumn, 6 spp. of genus Chaetoceros in summer, and 2 spp. of genus Chaetoceros and Thalassionema frauenfeldii in winter. Monthly abundance in the northern and western sea fluctuated with similar tendency, and the southern and eastern sea also showed similar pattern of monthly abundance variation. Species composition and dominant species succession mentioned above were quite different from previous studies, so some physical changes such as water temperature, salinity and current pattern might cause the changes of phytoplankton assemblages around Jeju Island.

A Study on the Landscape Interpretation of Songge Byeoleop(Korean Villa) Garden at Jogyedong, Mt. Bukhansan near Seoul for the Restoration (북한산 조계동 송계별업(松溪別業) 정원 복원을 위한 경관해석)

  • Rho, Jae-Hyun;Song, Suk-Ho;Jo, Jang-Bin;Sim, Woo-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.1-17
    • /
    • 2018
  • This study was conducted to interpret the landscape of Songge Byeoleop(Korean villa) garden at Jogyedong, Bukhansan near Seoul which was built in the mid 17C. to restore through the literature reviews and field surveys. The results were as follows; Songge Byeoleop garden was a royal villa, constructed at King Injo24(1646) of Joseon dynasty by prince Inpyeong(麟坪大君), Lee, Yo(李?, 1622~1658), the third son of King Injo who was a brother of King Hyojong. It was a royal villa, Seokyang-lu under Mt. Taracsan of Gyendeokbang, about 7km away in the straight line from main building. It was considered that the building system was a very gorgeous with timber coloring because of owner's special situation who was called the great prince. The place of Songge Byeoleop identity and key landscape of the place were consisted with Gucheon waterfall and the sound of the water with multi-layered waterfall which might be comparable to the waterfall of Yeosan in China. After the destruction of the building, the place was used for the royal tomb quarry, but there was a mark stone for forbidden quarry. The Inner part of Songge Beoleop, centered with Jogedongcheon, Chogye-dong, composted beautifully with the natural sceneries of Gucheon waterfall, Handam and Changbeok, and artificial structures, such as Bihong-bridge, Boheogak, Yeonghyudang and Gyedang. In addition, the existing Chinese characters, 'Songge Beoleop' and 'Gucheoneunpog' carved in the rocks are literary languages and place markings symbolizing with the contrast of the different forests and territories. They gave the names of scenery to the rock and gave meaning to them. Particularly, Gucheon waterfall which served as a visual terminal point, is a cascade type with multi-staged waterfall. and the lower part shows the topographical characteristics of the Horse Bowl-shaped jointed with port-holes. On the other hand, the outer part is divided into the spaces for the main entrance gate, a hanging bridge character, a bridge connecting the inside and the outside, and Yeonghyudang part for the purpose of living. Also in the Boheogak area, dual view frame structures are made to allow the view of the four sides including the width and the perimeter of the villa. In addition, at the view point in Bihong-bridge, the Gucheon water fall divides between the sacred and profane, and crosses the Bihong-bridge and climbs to the subterranean level.

Longitudinal Pattern of Large Wood Distribution in Mountain Streams (산지계류에 있어서 유목의 종단적 분포특성)

  • Seo, Jung Il;Chun, Kun Woo;Kim, Min Sik;Yeom, Kyu Jin;Lee, Jin Ho;Kimura, Masanobu
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.52-61
    • /
    • 2011
  • Whereas recent researches have elucidated the positive ecological roles of large wood (LW) in fishbearing channels, LW is also recognized as a negative factor of log-laden debris flows and floods in densely populated areas. However in Republic of Korea, no study has investigated longitudinal variations of LW distribution and dynamic along the stream corridor. Hence to elucidate 1) physical factors controlling longitudinal distribution of LW and 2) their effect on variation in LW load amount, we surveyed the amount of LW with respect to channel morphology in a mountain stream, originated from Mt. Ki-ryong in Inje, Gangwondo. Model selection in the Generalized Linear Model procedure revealed that number of boulder (greater than or equal to 1.0 m in diameter), bankfull channel width and their interaction were the best predictors explaining LW load volume per unit channel segment area (unit LW load). In general, boulders scattered within small mountain streams influence LW retention as flow obstructions. However, in this study, we found that the effect of the boulders vary with the channel width; that is, whereas the unit LW load in the segment with narrow channel width increased continuously with increasing boulder number, it in the segment with wide channel width did not depend on the boulder number. This should be because that, in two channels having different widths, the rates of channel widths reduced by boulders are different although boulder numbers are same. Our findings on LW load varying with physical factors (i.e., interaction of boulder number and channel width) along the stream corridor suggest understanding for longitudinal continuum of hydrogeomorphic and ecologic characteristics in stream environments, and these should be carefully applied into the erosion control works for systematic watershed management and subsequent disaster prevention.

Hydrograph Separation and Flow Characteristic Analysis for Observed Rainfall Events during Flood Season in a Forested Headwater Stream (산지계류에 있어서 홍수기의 강우사상에 대한 유출수문곡선 분리 및 특성 분석)

  • Nam, Sooyoun;Chun, Kun-Woo;Lee, Jae Uk;Kang, Won Seok;Jang, Su-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2021
  • We examined the flow characteristics by direct runoff and base flow in a headwater stream during observed 59 rainfall events of flood season (June~September) from 2017 to 2020 yrs. Total precipitation ranged from 5.0 to 400.8 mm, total runoff ranged from 0.1 to 176.5 mm, and runoff ratio ranged from 0.1 to 242.9% during the rainfall events. From hydrograph separation, flow duration in base flow (139.3 days) was tended to be longer than direct runoff (78.3 days), while the contribution of direct runoff in total runoff (54.2%) was greater than base flow (45.8%). The total amount and peak flow of direct runoff and base flow had the highest correlation (p<0.05) with total precipitation and duration of rain among rainfall and soil moisture conditions. Dominant rainfall events for the total amount and peak flow of base flow were generated under 5.0~200.4 and 10.5~110.5 mm in total precipitation. However, when direct runoff occurred as dominant rainfall events, total amount and peak flow were increased by 267.4~400.8 and 169.0~400.8 mm in total precipitation. Therefore, the unique aspects of our study design permitted us to draw inferences about flow characteristic analysis with the contribution of base flow and/or direct runoff in the total runoff in a headwater stream. Furthermore, it will be useful for the long-term strategy of effective water management for integrated surface-groundwater in the forested headwater stream.

A Study on the Structural Reinforcement of the Modified Caisson Floating Dock (개조된 케이슨 플로팅 도크의 구조 보강에 대한 연구)

  • Kim, Hong-Jo;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.172-178
    • /
    • 2021
  • In the ship repair market, interest in maintenance and repair is steadily increasing due to the reinforcement of prevention of environmental pollution caused by ships and the reinforcement of safety standards for ship structures. By reflecting this effect, the number of requests for repairs by foreign shipping companies increases to repair shipbuilders in the Southwest Sea. However, because most of the repair shipbuilders in the southwestern area are small and medium-sized companies, it is difficult to lead to the integrated synergy effect of the repair shipbuilding companies. Moreover, the infrastructure is not integrated; hence, using the infrastructure jointly is a challenge, which acts as an obstacle to the activation of the repair shipbuilding industry. Floating docks are indispensable to operating the repair shipbuilding business; in addition, most of them are operated through renovation/repair after importing aging caisson docks from overseas. However, their service life is more than 30 years; additionally, there is no structure inspection standard. Therefore, it is vulnerable to the safety field. In this study, the finite element analysis program of ANSYS was used to evaluate the structural safety of the modified caisson dock and obtain additional structural reinforcement schemes to solve the derived problems. For the floating docks, there are classification regulations; however, concerning structural strength, the regulations are insufficient, and the applicability is inferior. These insufficient evaluation areas were supplemented through a detailed structural FE-analysis. The reinforcement plan was decided by reinforcing the pontoon deck and reinforcement of the side tank, considering the characteristics of the repair shipyard condition. The final plan was selected to reinforce the side wing tank through the structural analysis of the decision; in addition, the actual structure was fabricated to reflect the reinforcement plan. Our results can be used as reference data for improving the structural strength of similar facilities; we believe that the optimal solution can be found quickly if this method is used during renovation/repair.

Retrieval of Oceanic Skin Sea Surface Temperature using Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) Radiance Measurements (적외선 라디오미터 관측 자료를 활용한 해양 피층 수온 산출)

  • Kim, Hee-Young;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.617-629
    • /
    • 2020
  • Sea surface temperature (SST), which plays an important role in climate change and global environmental change, can be divided into skin sea surface temperature (SSST) observed by satellite infrared sensors and the bulk temperature of sea water (BSST) measured by instruments. As sea surface temperature products distributed by many overseas institutions represent temperatures at different depths, it is essential to understand the relationship between the SSST and the BSST. In this study, we constructed an observation system of infrared radiometer onboard a marine research vessel for the first time in Korea to measure the SSST. The calibration coefficients were prepared by performing the calibration procedure of the radiometer device in the laboratory prior to the shipborne observation. A series of processes were applied to calculate the temperature of the layer of radiance emitted from the sea surface as well as that from the sky. The differences in skin-bulk temperatures were investigated quantitatively and the characteristics of the vertical structure of temperatures in the upper ocean were understood through comparison with Himawari-8 geostationary satellite SSTs. Comparison of the skin-bulk temperature differences illustrated overall differences of about 0.76℃ at Jangmok port in the southern coast and the offshore region of the eastern coast of the Korean Peninsula from 21 April to May 6, 2020. In addition, the root-mean-square error of the skin-bulk temperature differences showed daily variation from 0.6℃ to 0.9℃, with the largest difference of 0.83-0.89℃ at 1-3 KST during the daytime and the smallest difference of 0.59℃ at 15 KST. The bias also revealed clear diurnal variation at a range of 0.47-0.75℃. The difference between the observed skin sea surface temperature and the satellite sea surface temperature showed a mean square error of approximately 0.74℃ and a bias of 0.37℃. The analysis of this study confirmed the difference in the skin-bulk temperatures according to the observation depth. This suggests that further ocean shipborne infrared radiometer observations should be carried out continuously in the offshore regions to understand diurnal variation as well as seasonal variations of the skin-bulk SSTs and their relations to potential causes.