• Title/Summary/Keyword: Environmental capacity

Search Result 3,965, Processing Time 0.033 seconds

An Analysis of Dynamic Characteristics of RDX Combustion Using Rigorous Modeling (상세 모델링을 통한 RDX 연소 동특성 분석)

  • Kim, Shin-Hyuk;Yeom, Gi-Hwoen;Moon, Il;Chae, Joo-Seung;Kim, Hyeon-Soo;Oh, Min
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.398-405
    • /
    • 2014
  • In the treatment of spent high energetic materials, the issues such as environmental pollution, safety as well as working capacity should be carefully considered and well examined. In this regard, incineration has been recommended as one of the most promising processes for the disposal of such explosives. Due to the fact that high energetic materials encompass various types and their different characteristics, the technology development dealing with various materials is not an easy task. In this study, rigorous modeling and dynamic simulation was carried out to predict dynamic physico-chemical phenomena for research department explosive (RDX). Plug flow reactor was employed to describe the incinerator with 263 elementary reactions and 43 chemical species. Simulation results showed that safe operations can be achieved mainly by controlling the reactor temperature. At 1,200 K, only thermal decomposition (combustion) occurred, whereas increasing temperature to 1,300 K, caused the reaction rates to increase drastically, which led to ignition. The temperature further increased to 3,000 K which was the maximum temperature recorded for the entire process. Case studies for different operating temperatures were also executed and it was concluded that the modeling approach and simulation results will serve as a basis for the effective design and operation of RDX incinerator.

Approximate Reliability Analysis Model for R.C. Bridge Superstructures based on Systems Reliability Methods (체계신뢰성(體系信賴性) 방법(方法)에 기초(基礎)한 R.C. 도로교(道路橋) 상부구조(上部構造)의 근사적(近似的) 신뢰성해석(信賴性解析) 모형(模型))

  • Cho, Hyo Nam;Koo, Bon Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.79-88
    • /
    • 1987
  • This study is intended to propose a system reliability analysis model for R.C. bridge superstructures based on the systems reliability theory. Approximately assuming that the ultimate capacity of the superstructures is reached, when two adjacent girders fail subsequently, a practical system reliability model is proposed, which is based on a point estimate for Level II parallel-series system modelling. The sensitivity analysis of system reliabilities for the variation of the coefficients of correlations between the failure modes is performed by applying the proposed model for R.C. T beam bridges. It is observed that the point estimate method for the proposed model corresponds to the average value of the Ditlevsen's bound, and the system reliability index, ${\beta}_s$, varies quite sensitively according to the variation of the cofficients of correlations. Systems reliabilities of a few existing T beam bridges are analyzed by applying the proposed practical system reliability method of this study, and, in addition, the preferable direction of the development of the reliability-based code calibration using the system target reliability index concept are suggested.

  • PDF

Nonlinear Explosion Analyses for Damage Assessments of Reinforced Concrete Structures (비선형 폭발해석에 의한 콘크리트 구조물의 손상도 평가)

  • Huh, Taik Nyung;Kim, Seong Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • In general, the large loads which are applied from explosion, impact, earthquake and wind at a short time caused the materials of structures to large deformations, rotations and strains locally. If such phenomena will be analyzed, hydrocodes which can be considered fluid-structure interaction under computational continuum mechanics are inevitably needed. Also, the explosion mechanism is so complicated, it is reasonable that the behaviors of structure are predicted through explosion analyses and experiment at the same time. But, unfortunately, it is true that explosion experiments are limited to huge cost, large experiment facilities and safety problems. Therefore, in this study, it is shown that the results of explosion analyses using the AUTODYN are agreed with those of existing explosion experiments for reinforced concrete slabs within reasonable error limits. And the explosion damage of the same reinforced concrete slab are assessed for quite different reinforcement arrangement spacings, concrete cover depths, and vertical reinforcements. From the explosion analyses, it is known that the more the ratio of slab thickness to reinforcement arrangement spacing is increased, and small-diameter reinforcements are used than large-diameter reinforcements on the same reinforcement ratio, and vertical reinforcements are used, the more the anti-knock capacities are improved.

Time-Dependent Optimal Routing in Indoor Space (실내공간에서의 시간 가변적 최적경로 탐색)

  • Park, In-Hye;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.361-370
    • /
    • 2009
  • As the increasing interests of spatial information for different application area such as disaster management, there are many researches and development of indoor spatial data models and real-time evacuation management systems. The application requires to determine and optical paths in emergency situation, to support evacuees and rescuers. The optimal path in this study is defined to guide rescuers, So, the path is from entrance to the disaster site (room), not from rooms to entrances in the building. In this study, we propose a time-dependent optimal routing algorithm to develop real-time evacuation systems. The network data that represents navigable spaces in building is used for routing the optimal path. Associated information about environment (for example, number of evacuees or rescuers, capacity of hallways and rooms, type of rooms and so on) is assigned to nodes and edges in the network. The time-dependent optimal path is defined after concerning environmental information on the positions of evacuees (for avoiding places jammed with evacuees) and rescuer at each time slot. To detect the positions of human beings in a building per time period, we use the results of evacuation simulation system to identify the movement patterns of human beings in the emergency situation. We use the simulation data of five or ten seconds time interval, to determine the optimal route for rescuers.

  • PDF

Electrochemical Treatment of Dyeing Wastewater using Insoluble Catalyst Electrode (불용성 촉매전극을 이용한 염색폐수의 전기화학적 처리)

  • Um, Myeong-Heon;Ha, Bum-Yong;Kang, Hak-Chul
    • Clean Technology
    • /
    • v.9 no.3
    • /
    • pp.133-144
    • /
    • 2003
  • In this study, Insoluble catalyst electrode for oxide systems were manufactured, by using of them, carried out experiments on electrolytic treatment of dyeing wastewater containing persistent organic compounds, and then made a comparative study of the efficiency of treatment for environmental pollutants and whether each of them is valuable of not as an electrode for soluble electrode(Fe, Al) and insoluble electrode(SUS, R.C.E; Replaced Catalyst Electrode) which were used in the electrolytic system. Besides, it was investigated the conditions for electrolytic treatment to find the maximum efficiency of electrolytic treatment. As the result of this study, by using of insoluble catalyst electrode for oxide can solved the stability of electrode that is one of the greatest problems in order to put to practical use of electrolysis process in the treatment of the sewage and wastewater and the result runs as follows; 1. The durability of insoluble catalyst electrode(R.C.E) can be verified the most favorable when the molar ratio of $RuO_2-SnO_2-IrO_2-TiO_2$(4 compounds system) is 70/20/5/5. 2. The efficiency of treatment was obtained a more than 90% goodness for CODMn and also a good results for T-N removal in the experimental conditions of the distance of electrode 5 mm, time of electrolysis 60 minutes, permissible voltage 10V, processing capacity $0.5{\ell}$.

  • PDF

Analysis of Estimation Technique for Solid Sediments in Combined Sewer Systems (합류식 관거 내 고형물 퇴적량 산정기법 분석)

  • Lee, Jae-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.405-415
    • /
    • 2006
  • The deposition of sewer solids during dry weather in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. Sewer solid accumulations in drainage systems also create the 'first-flush' phenomena during wet weather runoff periods. In order to solve these problems, measurement of these loadings for a given sewer system for extended period is needed but this task is very difficult and extremely expensive. In this study, generalized procedures for estimating sewer sediment solid during dry weather in combined sewer systems developed by the U. S. Environmental Protection Agency were applied in a drainage system in Korea. As result, the appropriate equation can be selected and applied according to the available data. However, the estimated solid sediment shows considerable difference between methods which classified by model and estimation methods of variable. The estimated values using equations (1) $\sim$ (4) are greater than that of equations (5) $\sim$ (9) and intermediate models show greater values than elaborate or simplest models. The comparison between simulated and measured solid deposition is difficult due to the absent of measurement data, but this estimation method can be used usefully for the management of sewer solid with reduction of cost and effort if the measurement is carried out and the equation is adjusted according to the actual drainage systems in Korea.

Evaluation of Discharge Capacity of Upper Sand Deposit at the Nakdong River Estuary (낙동강 하구 상부퇴적사질토의 통수능 평가)

  • Jeong, Jin-Yeong;Kim, Tae-Hyung;Im, Eun-Sang;Hwang, Woong-Ki;Kim, Gyu-Jong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.109-119
    • /
    • 2017
  • In this research, it was investigated that whether the upper sand deposited in Nakdong River Estuary Delta region has the role of horizontal drains like sand mat. The results from tests for particle size distribution and permeability of the upper sand deposit did not meet completely the criteria for the horizontal drain material. Thus, numerical analysis has been conducted additionally. Numerical analyses of consolidation of soft soils with upper layer of sand deposit are conducted in both the sand mat with a thickness of 1m and the upper sand deposit with 1, 2, 3, and 4 m of thickness and their results are compared. As the results of numerical analysis, the upper sand deposit with a thickness of 2m or more may play the role of horizontal drains similar to a sand mat. If a PVD is installed, the ability of upper sand deposit as horizontal drains is increased. Form this study, it was concluded that the upper sand deposited in Nakdong River Estuary Delta has the role of horizontal drain.

Stress Concentration Ratio According to Penetration Rate of Composite Ground Reinforced with GCP (GCP로 개량된 복합지반의 관통률에 따른 응력분담비)

  • Na, Seung-Ju;Kim, Daehyeon;Lee, Ik-Hyo;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.35-45
    • /
    • 2017
  • Gravel compaction pile (GCP) is widely used as it increases the bearing capacity of soft ground and reduces the consolidation settlement. Stress concentration ratio for design is dependent on the area replacement, surcharge pressure, depth and penetration rate. However, a range of stress concentration ratio obtained through field, laboratory experiments and numerical analysis is large. But since the main objective of the study is to evaluate the stress concentration ratio and settlement for both area replacement ratio and penetration rate through numerical analysis. Numerical analysis using the finite element program ABAQUS 6.12-4 has been performed for the composite ground with GCP. As a result, the stress concentration ratio at the points except for the point of top is in the range of 1.21-5.36, 1.19-5.45, 2.16-5.60 for 60%, 80% and 100% penetration, respectively. In general, as the penetration rate and area replacement ratio increases, the stress concentration ratio tends to increase.

Developing Local Biodiversity Strategies and Action Plans (지자체 생물다양성 관리전략 구축)

  • Kim, Geunhan;Kong, Seok-Jun;Kim, Min-Kyeong;Lee, Moung-Jin;Song, Jiyoon;Jeon, Seong-Woo
    • Journal of Environmental Policy
    • /
    • v.13 no.2
    • /
    • pp.3-20
    • /
    • 2014
  • Due to habitat damage associated with climate change and human activities, biodiversity has decreased all over the world. In order to prevent further reduction in biodiversity, the international community has endeavored to establish a cooperative system, such as the Convention on Biological Diversity (CBD). Until now, most biodiversity strategic planning has been led by the national government. However, the National Biodiversity Strategy and Action Plan is conservative and its strategic plan is vague. Therefore, we propose a method for managing local biological resources called the Local Biodiversity Strategy and Action Plan. In order to provide the strategic plans and detailed plans for the Local Biodiversity Strategy and Action Plan, the report has examined several cases including Convention on Biological Diversity, Strategic Plan for Biodiversity 2011-2020, and the biodiversity strategies and action plans of the Republic of Korea and several other countries. As a result, the report demonstrates the survey and protection of bio-species, the designation and monitoring of conservation region, the management of the integrated eco-network, the establishment of biodiversity organizations and capacity building, the methods to promote networking and traditional knowledge, and the strategy for development in bioindustry. Consequently, the implementation of biodiversity management strategies by local governments will play a significant role in preserving and increasing biodiversity by realizing the goals of Strategic Plan for Biodiversity 2011-2020.

  • PDF

Seismic structural demands and inelastic deformation ratios: Sensitivity analysis and simplified models

  • Chikh, Benazouz;Laouami, Nacer;Mebarki, Ahmed;Leblouba, Moussa;Mehani, Youcef;Kibboua, Abderrahmane;Hadid, Mohamed;Benouar, Djillali
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • Modern seismic codes rely on performance-based seismic design methodology which requires that the structures withstand inelastic deformation. Many studies have focused on the inelastic deformation ratio evaluation (ratio between the inelastic and elastic maximum lateral displacement demands) for various inelastic spectra. This paper investigates the inelastic response spectra through the ductility demand ${\mu}$, the yield strength reduction factor $R_y$, and the inelastic deformation ratio. They depend on the vibration period T, the post-to-preyield stiffness ratio ${\alpha}$, the peak ground acceleration (PGA), and the normalized yield strength coefficient ${\eta}$ (ratio of yield strength coefficient divided by the PGA). A new inelastic deformation ratio $C_{\eta}$ is defined; it is related to the capacity curve (pushover curve) through the coefficient (${\eta}$) and the ratio (${\alpha}$) that are used as control parameters. A set of 140 real ground motions is selected. The structures are bilinear inelastic single degree of freedom systems (SDOF). The sensitivity of the resulting inelastic deformation ratio mean values is discussed for different levels of normalized yield strength coefficient. The influence of vibration period T, post-to-preyield stiffness ratio ${\alpha}$, normalized yield strength coefficient ${\eta}$, earthquake magnitude, ruptures distance (i.e., to fault rupture) and site conditions is also investigated. A regression analysis leads to simplified expressions of this inelastic deformation ratio. These simplified equations estimate the inelastic deformation ratio for structures, which is a key parameter for design or evaluation. The results show that, for a given level of normalized yield strength coefficient, these inelastic displacement ratios become non sensitive to none of the rupture distance, the earthquake magnitude or the site class. Furthermore, they show that the post-to-preyield stiffness has a negligible effect on the inelastic deformation ratio if the normalized yield strength coefficient is greater than unity.