• Title/Summary/Keyword: Environmental Values

Search Result 6,377, Processing Time 0.034 seconds

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.

Developing Content System for Home Economics Curriculum in Connection with Education for Sustainable Development(ESD): Focusing on the 'Life Environment and Sustainable Choice' Area (지속가능발전교육(ESD)을 연계한 가정과 교육과정의 내용체계 개발: '생활환경과 지속가능한 선택' 영역)

  • Yoon, So Hee;Sohn, Sang-Hee;Lee, Soo-Hee
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.2
    • /
    • pp.145-161
    • /
    • 2023
  • The purpose of this study is to develop a content system for the home economics curriculum that integrates Education for Sustainable Development(ESD) and provides basic material for ESD implementation in schools. In view of this, the content elements of the revised home economics curriculum for 2022 were analyzed, and a content system for the home economics curriculum, linked to ESD, was proposed based on the implications drawn from the analysis. The results are as follows. First, the three components of competencies, namely knowledge, values, and skills, were organized equally as a whole. However, the association between the content elements and key competencies in sustainability was found to be insufficient. Consequently, it is proposed that key competencies in sustainability should be cultivated integrally. Second, no content element was identified that can promote social participation. Therefore, it is proposed that solutions should be dealt with at the level of social participation. Third, the connection with Sustainable Development Goals(SDGs) was observed in only six of the 28 content elements. Wherever relevant, it is proposed to incorporate key issues related to SDGs. Fourth, the analysis confirmed that only the environmental dimension of sustainable development was considered. Therefore, it is proposed to pursue coexistence based on temporal and spatial relationship and consider the dimensions of environment, society, and economy in an integrated manner.

Changes of ecological niche in Quercus serrata and Quercus aliena under climate change (갈참나무와 졸참나무의 기후변화에 따른 생태지위 변화)

  • Yoon-Seo Kim;Jae-Hoon Park;Eui-Joo Kim;Jung-Min Lee;Ji-Won Park;Yeo-Bin Park;Se-Hee Kim;Ji-Hyun Seo;Bo-Yeon Jeon;Hae-In Yu;Gyu-Ri Kim;Ju-Seon Lee;Yeon-Jun Kang;Young-Han You
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.205-212
    • /
    • 2023
  • This study was attempted to find out how the ecological niche and interspecies relationship of Quercus aliena and Q. serrata, which are the main constituents of potential natural vegetation along the riverside of mountains in Korea, under climate change conditions. To this end, soil moisture and soil nutrients were treated with 4 grad ients under climate change conditions with elevated CO2 and temperature, plants we re harvested at the end of the growing season, growth responses of traits were measured, ecological niche breadth and overlap were calculated, and it was compared with that of the control group(ambient condition). In addition, the relationship between the two species was analyzed by principal component analysis using trait values. As a result, the ecological niche breadth of Q. aliena was wider than that of Q. serrata under the moisture environment conditions under climate change. Under nutrient conditions, the ecological niche of the two species were similar. In addition, the ecological overlap for soil moisture of Q. aliena and Q. serrata was wider than the soil nutrient gradient under climate change. The species with traits in which the increase in ecological niche breadth due to climate change occurred more than the decrease was Q. aliena in both water and nutrient gradients. And in the responses of the population level, due to climate change, the adaptability of Q. aliena was higher than that of Q. serrata under the soil moisture condition, but the two species were similar under the nutrient condition. These results mean that the competition between the two species occurs more severely in the water environment under climate change conditions, and at that time, Q. aliena has higher adaptability than Q. serrata.

Development and Testing of a RIVPACS-type Model to Assess the Ecosystem Health in Korean Streams: A Preliminary Study (저서성 대형무척추동물을 이용한 RIVPACS 유형의 하천생태계 건강성 평가법 국내 하천 적용성)

  • Da-Yeong Lee;Dae-Seong Lee;Joong-Hyuk Min;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • In stream ecosystem assessment, RIVPACS, which makes a simple but clear evaluation based on macroinvertebrate community, is widely used. In this study, a preliminary study was conducted to develop a RIVPACS-type model suitable for Korean streams nationwide. Reference streams were classified into two types(upstream and downstream), and a prediction model for macroinvertebrates was developed based on each family. A model for upstream was divided into 7 (train): 3 (test), and that for downstream was made using a leave-one-out method. Variables for the models were selected by non-metric multidimensional scaling, and seven variables were chosen, including elevation, slope, annual average temperature, stream width, forest ratio in land use, riffle ratio in hydrological characteristics, and boulder ratio in substrate composition. Stream order classified 3,224 sites as upstream and downstream, and community compositions of sites were predicted. The prediction was conducted for 30 macroinvertebrate families. Expected (E) and observed fauna (O) were compared using an ASPT biotic index, which is computed by dividing the BMWPK score into the number of families in a community. EQR values (i.e. O/E) for ASPT were used to assess stream condition. Lastly, we compared EQR to BMI, an index that is commonly used in the assessment. In the results, the average observed ASPT was 4.82 (±2.04 SD) and the expected one was 6.30 (±0.79 SD), and the expected ASPT was higher than the observed one. In the comparison between EQR and BMI index, EQR generally showed a higher value than the BMI index.

Development of Carbon Emission Factors and Biomass Allometric Equations for Metasequoia glyptostroboides and Platanus occidentalis in Urban Forests (정주지의 메타세쿼이아와 양버즘나무의 탄소 배출 계수 및 바이오매스 상대생장식 개발)

  • Jun-Young Jung;Subin Im;Hyun-Jun Kim;Kye-Han Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • This study aimed to develop biomass allometric equations and estimate carbon emission factors, such as the wood density, biomass-expansion factor, and root-to-shoot ratio, for Platanus occidentalis and Metasequoia glyptostroboides planted in urban areas. Twenty M. glyptostroboides and 25 P. occidentalis trees were harvested, and the dry weights and stem volumes of stems, branches, leaves, and roots (>5 mm) were measured. The wood densities of M. glyptostroboides and P. occidentalis were 0.293 ± 0.008 g cm-3 and 0.509 ± 0.018 g cm-3, and the biomass-expansion factors were 1.738 ± 0.031 and 1.561 ± 0.035. The root-to-shoot ratios were 0.446 ± 0.009 and 0.402 ± 0.012. The uncertainty tests (coefficient of variation, %) gave 2.8% and 3.5% values for wood density, 1.8% and 2.3% for biomass-expansion factor, and 2.1% and 2.9% for root-to-shoot ratio, respectively. Among the developed allometric equations, Model I using the diameter at breast height (DBH) was suitable. The allometric equations of M. glyptostroboides and P. occidentalis above ground were y = 1.679 (DBH)1.315 and y = 0.505 (DBH)1.896, and the allometric equations of the root and total were y = 0.746 (DBH)1.315, y = 0.301 (DBH)1.751, y = 2.422 (DBH)1.316, and y = 0.787 (DBH)1.858. If the carbon-emission factors of this study and biomass allometric equations of the three developed models are used to estimate the carbon storage and biomass of urban forests, errors caused by not considering the use of fixed factors and the environmental differences can be reduced.

Flow and Mixing Behavior at the Tidal Reach of Han River (한강 감조구간에서의 흐름 및 혼합거동)

  • Seo, Il Won;Song, Chang Geun;Lee, Myung Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.731-741
    • /
    • 2008
  • Previous studies on the numerical simulation at the tidal reach of Han River tend to restrict downstream boundary as Jeon-ryu station due to difficulties in gaining cross section data and tidal elevation values at Yu-do. But, in this study, geometries beyond the confluence of Gok-reung stream and Im-jin River are constructed based on the numerical sea map; tidal elevation at the downstream boundary, Yu-do is estimated by harmonic analysis of In-cheon tide gage station so that hydrodynamic and diffusion behavior have been analyzed. The domain ranging from Shin-gok submerged weir to Yu-do is selected (which is 36.8 km in length). RMA-2 and RAM4 developed by Il Won Seo (2008) are applied to simulate flow and diffusion behavior, respectively. Numerical results of flow characteristic are compared with the measured data at Jeon-ryu station. Simulation is carried out from June 23 to 25 in 2006 on the ground that hydrologic data is satisfactory and tidal difference is huge during that period. The result shows that reverse flow occurs 5 times according to the tidal elevation at Yu-do and the maximum reverse flow is observed up to Jang-hang IC, which is 32.9 km in length. Also analysis is focused on the process of generation and disappearance of reverse flow, the distribution of water surface elevation and velocity along the maximum velocity line, and the transport of nonconservative pollutant. Pollutant injected from Gul-po stream spreads widely across the river; however, the size of BOD cloud entering from Gok-reung stream is relatively small because water depth at the mid and left side becomes deeper and maximum velocity occurs along the right bank so that transverse mixing is completed quickly. Finally, mixing characteristic of horizontal salinity distribution is obtained by estimating the salinity input with analytical solution of 1D advection-dispersion equation.

A Study on the Characteristics of Ecosystem Change and Management in Urban Wetland - Focusing on the Dunchon-Dong Ecological and Scenery Conservation Area, Seoul - (도시 습지 자연생태계 변화 특성 및 관리방안 연구 - 서울시 둔촌동 생태·경관보전지역을 대상으로 -)

  • Han, Bong-Ho;Park, Seok-Cheol;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.1-20
    • /
    • 2023
  • The present study has monitored the changes in the biodiversity of Dunchon-Dong ecological and landscape conservation area after the restoration of the wetland, identified and analyzed the threats to the ecosystem, and presented a management plan accordingly. In this area which was forests and rice paddies in the past, apartment reconstruction is currently underway, with some hinterland forests and wetlands remaining. When we look into the change in the floras, the total number of species was 193 in 2000 before the restoration, it decreased from 2004 to 2006, and as of 2019, it was 149, showing an increasing trend. The result of comparing the species that emerged before and after the restoration showed an increase in Cyperaceae herbs such as Carex maximowiczii and Carex dispalata growing in wetland areas within forests and Schoenoplectiella juncoides and Schoenoplectus tabernaemontani growing in areas within wetlands where shallow water is maintained. As a result of analyzing the change in the area ratio of each type of extant vegetation, the wetland native herbs formed the power at the highest ratio after the restoration. The change in the power of the wetland native herbs was on an increasing trend until 2007, after which it decreased much in 2010 and then gradually increased, showing values of 26.6% in 2000, 44.6% in 2002, 49.0% in 2005, 53.3% in 2007, 28.7% in 2010, and 37.3% in 2019. The cause of the decrease in 2010 was judged to be due to the vegetation management conducted to secure open water and remove organic matter in freshwater reservoirs. The amphibia which emerged from 2000 to 2019 was a total of 9 species including Hynobius leeshii, Bufo gargarizans, Kaloula borealis, and Rana uenoi. As a result of the changes in the emerging wild birds, the species diversity index before the restoration was 0.9922 in 2000, and the species diversity index after the restoration gradually increased to 1.2449 in 2005, 1.2467 in 2010, and 2.2631 in 2019. The amphibia and wild birds inhibiting in the Dunchon-Dong forest and wetland were judged to have increased through continuous wetland maintenance such as naturalized plant removal management, native plant maintenance, and open water securing management. For the ecosystem preservation management of the Dunchon-Dong ecological and landscape conservation area, it was suggested to minimize the impact of the Dunchon-Dong reconstruction project, reorganize the indiscriminate access roads adjacent to the wetland, and reorganize the main entrance to the wetland. For ecosystem restoration management, systematic restoration and ecological buffer planting were suggested to be carried out at the time of construction fence demolition.

Satisfaction Analysis for Green Infrastructure Activation around Dam in Terms of Sustainability (지속가능성 측면에서의 댐 주변 그린인프라 활성화를 위한 만족도 분석)

  • Lee, Dong-Kyu;Son, Byung-Hoon;An, Byung-Chul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.83-94
    • /
    • 2023
  • This study analyzed the satisfaction of green infrastructure around 39 dams, including multi-purpose dams, water dams, and flood control reservoir dams, to induce space improvement in terms of sustainability, and the results of the study are as follows. First, the satisfaction level based on the Likert scale of 5 points for the currently created dam green infrastructure was 3.76, and there were differences depending on the respondents' gender, age, residence, number of dam visits, and the need to pursue sustainability, and it was analyzed to be statistically significant. In the case of gender, p<.05, age, residence, number of dam visits, and the need to pursue sustainability were found to be p<.01. Regression analysis was conducted to confirm the effect of these respondents' characteristics on satisfaction, and it was analyzed that only the number of dam visits and the need to pursue sustainability had a statistically significant effect, and other characteristic variables had no significant effect. Second, in terms of satisfaction with the conceptual image of public bridge, view place and play space, which are the main spaces of dam green infrastructure considering sustainability, view place was the highest at 4.43, the play space was 4.35 and public bridge was analyzed as 4.21. The t-test result for the satisfaction of each space was found to be p<.01, and the difference in values was analyzed to be significant. The difference from the current satisfaction with green infrastructure was also analyzed as p<.00, showing a statistically significant difference. Third, as a way to revitalize green infrastructure around the dam through the results of satisfaction analysis, it is necessary to identify needs for major visitors in their 40s and 50s and create a space considering them. It was proposed to derive facilities and programs that can be introduced to other regions through the analysis of green infrastructure status around dams in Chungbuk, Jeonju, and Ulsan, where there are relatively many dams. Furthermore, satisfaction analysis by space showed that green infrastructure around the dam could be activated in terms of sustainability when selecting packaging materials considering the structure and shape of the dam, arranging observation facilities considering lake prospects, and introducing amusement facilities using local environmental resources. This study differs from previous studies in that it presented space improvement measures in consideration of sustainability for green infrastructure around dams for non-urban areas, and space improvement can contribute to improving it connectivity in urban and non-urban areas, which can also contribute to improving the sustainability of green infrastructure in Korea.

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.

Conceptual Model of Establishing Lifestyle (Lifestyle-DEPER [Decision, Execution, Personal Factor, Environment, Resources]) and Lifestyle Intervention Strategies (라이프스타일 형성 모델(Lifestyle-DEPER [Decision, Execution, Personal Factor, Environment, Resources])과 건강을 위한 라이프스타일 중재 전략)

  • Park, Ji-Hyuk;Park, Hae Yean;Hong, Ickpyo;Han, Dae-Sung;Lim, Young-Myoung;Kim, Ah-Ram;Nam, Sanghun;Park, Kang-Hyun;Lim, Seungju;Bae, Suyeong;Jin, Yeonju
    • Therapeutic Science for Rehabilitation
    • /
    • v.12 no.4
    • /
    • pp.9-22
    • /
    • 2023
  • The Lifestyle-DEPER (Decision, Execution, Personal Factors, Environment, Resources) model explains lifestyle formation. Lifestyles are shaped through the decision, execution, and habituation stages. Factors influencing the establishment of a lifestyle are categorized as environmental, resource, and personal. The environment encompasses our surroundings and social, physical, cultural, and virtual environments. Resources refer to what individuals possess, such as health, time, economic, and social resources. Personal factors include competencies, needs, and values. At the lifestyle establishment stage, each of these factors influences a different stage. These collective processes are referred to as events, encompassing both personal and social events. Health-related lifestyle factors include physical activity, nutrition, social relationships, and occupational participation. These are the goals of lifestyle intervention. The intervention strategy based on the Lifestyle-DEPER model, called KEEP (Knowledge, Evaluation, Experience, Plan), is a comprehensive approach to promoting a healthy lifestyle by considering lifestyle formation stages and their influencing factors. This study introduces the Lifestyle-DEPER model and presents a lifestyle intervention strategy (KEEP) to promote health. Further research is required to validate the practicality of the model after applying interventions based on the lifestyle construction model.