• 제목/요약/키워드: Environmental Test Specification

검색결과 105건 처리시간 0.027초

Evaluation of Nonchromated Thin Organic Coatings for Corrosion Inhibition of Electrogalvanized Steel

  • Park, Jong Myung;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.68-73
    • /
    • 2007
  • The toxicity of chromium that is used to impart corrosion resistance to galvanized steel created environmental and health-related concerns and generated a great deal of interest in developing chrome-free treatment coatings. In the present work, organic-inorganic composite coatings were used to coat electrogalvanized steel (EG) sheets for corrosion protection without degrading its weldability property. The new coatings composed of specially modified polyurethane dispersion hybridized with silicate and unique inorganic-organic inhibitors were developed during this work. It was found that about $1{\mu}m$ thickness of coating layer is secure enough in corrosion resistance of flat and formed part even after alkaline degreasing. Overall chemical resistances including fingerprint resistance and paint adhesion property were satisfied with the test specification of Sony technical standard of SS-00260-2002. Therefore, it is concluded that the newly developed chrome-free product can replace the conventional chromated product.

FRP로 보강된 철근 콘크리트보의 전단강도 예측 (II) - 모델 검증 및 변수연구 - (Prediction of the Shear Strength of FRP Strengthened RC Beams (II) - Verification and parametric study -)

  • 심종성;박철우;문도영;심재원
    • 콘크리트학회논문집
    • /
    • 제17권3호
    • /
    • pp.353-359
    • /
    • 2005
  • 본 연구에서 제안한 바 있는 전단강도 모델2)의 효용성을 평가하기 위하여 미국, 일본, 유럽 등 선진국의 설계기준 및 여러 연구자들에 의해 제안된 전단강도 모델을 FfP로 전단 보강된 보의 실험에 적용하였다. 또한 제안된 모델을 포함하여 각 모델의 장점 및 단점을 실험결과와 비교를 통하여 분석하였다. 그 후에 FRP 보강방법, 즉, 보강재종류, 보강재 부착 방향, 보강량 및 보강재 폭 등이 전단보강효과에 미치는 영향에 대한 변수연구를 수행하였다. 해석결과, 본 연구에서 제안된 모델을 통하여 비교적 정확한 전단강도 예측이 가능한 것으로 나타났다.

매입말뚝의 시멘트풀 강도 및 마찰거동에 관한 연구 (Strength and Friction Behavior of Cement paste poured in the Bored Pile)

  • 박종배
    • 한국지반환경공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.31-39
    • /
    • 2004
  • 국내에서는 저소음, 저진동 말뚝공법으로 매입말뚝공법이 매우 활발하게 사용되고 있으나 설계시 마찰지지력을 과소하게 산정하는 경향이 있으며 시멘트풀의 배합비 및 품질관리에 대한 기준이 정립되지 않은 문제점이 있다. 본 연구에서는 시멘트풀에 대해 다양한 조건별로 시험을 실시하여 강도특성을 분석하였다. 시험결과 표준배합비(w/c=83%)의 시멘트풀의 압축강도는 최고 $156.0kgf/cm^2$를 나타내었고 w/c가 낮을수록, 재령이 길수록 압축강도가 커지는 경향을 나타내었고 토사의 혼입률이 높을수록 강도가 감소하여 일정량 이상이 혼입되면 제역할을 하지 못하는 것으로 나타났다. 또한 매입말뚝의 마찰특성을 분석하고 적합한 설계방안을 도출하기 위하여 시멘트풀의 경화 전후에 188회 동재하시험 결과를 분석하였다. 분석결과 극한단위 마찰력은 평균 $9.1kgf/cm^2$을 나타내어 매입말뚝의 통상적인 설계기준을 상회하는 것으로 나타났다.

  • PDF

Experimental testing of cold-formed built-up members in pure compression

  • Biggs, Kenneth A.;Ramseyer, Chris;Ree, Suhyun;Kang, Thomas H.-K.
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1331-1351
    • /
    • 2015
  • Cold-formed built-up members are compression members that are common in multiple areas of steel construction, which include cold-formed steel joints and stud walls. These members are vulnerable to unique buckling behaviors; however, limited experimental research has been done in this area. Give this gap, experimental testing of 71 built-up members was conducted in this study. The variations of the test specimens include multiple lengths, intermediate welds, orientations, and thicknesses. The experimental testing was devised to observe the different buckling modes of the built-up C-channels and the effects of the geometrical properties; to check for applicability of multiple intermediate welding patterns; and to evaluate both the 2001 and 2007 editions of the American Iron and Steel Institute (AISI) Specification for built-up members in pure compression. The AISI-2001 and AISI-2007 were found to give inconsistent results that at times were un-conservative or overly conservative in terms of axial strength. It was also found that orientation of the member has an important impact on the maximum failure load on the member.

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.

병원의 실내 공기 질 솔루션 선택에 영향을 미치는 요인들 (Critical Factor on Selection Indoor Air Quality improving alternatives for healthcare projects)

  • 당원홍안;안용한
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.63-64
    • /
    • 2023
  • Indoor Air Quality is crucial in hospital projects to ensure the health and safety of patients, staff, and visitors. The research methodology comprises an comprehensive literature review, then a comprehensive questionnaire survey conducted among stakeholders involved in Vietnamese hospital projects. 15 variables were identified and categorized into four distinct groups, elucidating their influence on the adoption of advanced IAQ-enhancing technology. This study uses factor analysis, a mean score method and hypothesis test to analyze the factor result from the survey. two-step process, including an in-depth literature review and questionaire survey. The study's findings culminated in the ranking, examination, and categorization of these 15 variables, which were clustered into four essential categories: economic factors, design elements, governance strategies, and technical requirements. Additionally, the research explored viable solutions to improve indoor air quality in Vietnam's unique environmental context, examining the factors that impact the selection of such solutions. The study's outcomes yield practical recommendations for architects, engineers, and hospital administrators in enhancing IAQ within healthcare facilities. Furthermore, it presents a framework attuned to local environmental factors and building materials, contributing significantly to the existing body of knowledge on IAQ within hospital projects, particularly in the Vietnamese context.

  • PDF

우주 인증용 대전자전중계기의 전원공급기 설계 및 구현에 대한 연구 (The Study on the Implementation and Design of Power Supply Unit of Digital of Dehop/Rehop Transponder of EQM)

  • 김기중
    • 한국전자통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.437-442
    • /
    • 2021
  • 본 연구는 우주 인증용 대전자전중계기용 전원공급기의 설계 및 구현에 대해 기술하였다. 위성버스의 PLDIU(Payload Distribution and Interface Unit)와 전원공급기의 인터페이스를 제시하였고, 우주환경에 대한 WCA(Worst Case Analysis)를 통하여 SEU(Single Event Upset) 등의 발생에 대한 회로 오동작 가능성을 최소화 시켰다. 발사환경 시 발생하는 진동 및 우주 방사능에 의한 TID(Total Ionizing Dose)에 대한 시뮬레이션을 통해 신뢰성 있는 전원공급기를 설계하였으며, 제작 후 우주환경시험을 통하여 해당 구성품에 대한 환경 시험 규격에 만족함을 확인하였다.

Investigation of design values computation of wood shear walls constructed with structural foam sheathing

  • Shadravan, Shideh;Ramseyer, Chris C.
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.223-238
    • /
    • 2019
  • This study investigated the ultimate lateral load capacity of shear walls constructed with several types of structural foam sheathing. Sixteen tests were conducted and the results were compared to the published design values commutated by the manufactures for each test series. The sheathing products included 12.7 mm (1/2 in) SI-Strong, 25.4 mm (1 in) SI-Strong, 12.7 mm (1/2 in) R-Max Thermasheath, and 2 mm (0.078 in) ThermoPly Green. The structural foam sheathing was attached per the manufacturers' specification to one side of the wood frame for each wall tested. Standard 12.7 mm (1/2 in) gypsum wallboard was screwed to the opposite side of the frame. Simpson HDQ8 tie-down anchors were screwed to the terminal studs at each end of the wall and anchored to the base of the testing apparatus. Both monotonic and cyclic testing following ASTM E564 and ASTM E2126, respectively, were considered. Results from the monotonic tests showed an 11 to 27 percent smaller capacity when compared to the published design values. Likewise, the test results from the cyclic tests showed a 24 to 45 percent smaller capacity than the published design values and did not meet the seismic performance design criteria computation.

Combined bending and web crippling of aluminum SHS members

  • Zhou, Feng;Young, Ben
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.173-185
    • /
    • 2019
  • This paper presents experimental and numerical investigations of aluminum tubular members subjected to combined bending and web crippling. A series of tests was performed on square hollow sections (SHS) fabricated by extrusion using 6061-T6 heat-treated aluminum alloy. Different specimen lengths were tested to obtain the interaction relationship between moment and concentrated load. The non-linear finite element models were developed and verified against the experimental results obtained in this study and test data from existing literature for aluminum tubular sections subjected to pure bending, pure web crippling, and combined bending and web crippling. Geometric and material non-linearities were included in the finite element models. The finite element models closely predicted the strengths and failure modes of the tested specimens. Hence, the models were used for an extensive parametric study of cross-section geometries, and the web slenderness values ranged from 6.0 to 86.2. The combined bending and web crippling test results and strengths predicted from the finite element analysis were compared with the design strengths obtained using the current American Specification, Australian/New Zealand Standard and European Code for aluminum structures. The findings suggest that the current specifications are either quite conservative or unconservative for aluminum square hollow sections subjected to combined bending and web crippling. Hence, a bending and web crippling interaction equation for aluminum square hollow section specimens is proposed in this paper.

Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.551-565
    • /
    • 2019
  • A total of 36 carbon steel and stainless steel bolted connections subjected to shear loading at different strain rates was experimentally investigated. The connection specimens were fabricated from carbon steel grades 1.20 mm G500 and 1.90 mm G450, as well as cold-formed stainless steel types EN 1.4301 and EN 1.4162 with nominal thickness 1.50 mm. The connection tests were conducted by displacement control test method. The strain rates of 10 mm/min and 20 mm/min were used. Structural behaviour of the connection specimens tested at different strain rates was investigated in terms of ultimate load, elongation corresponding to ultimate load and failure mode. Generally, it is shown that the higher strain rate on the bolted connection specimens, the higher ultimate load was obtained. The ultimate loads were averagely 2-6% higher, while the corresponding elongations were averagely 8-9% higher for the test results obtained from the strain rate of 20 mm/min compared with those obtained from the lower strain rates (1.0 mm/min for carbon steel and 1.5 mm/min for stainless steel). The connection specimens were generally failed in plate bearing of the carbon steel and stainless steel. It is shown that increasing the strain rate up to 20 mm/min generally has no effect on the bearing failure mode of the carbon steel and stainless steel bolted connections. The test strengths and failure modes were compared with the results predicted by the bolted connection design rules in international design specifications, including the Australian/New Zealand Standard (AS/NZS4600 2018), Eurocode 3 - Part 1.3 (EC3-1.3 2006) and North American Specification (AISI S100 2016) for cold-formed carbon steel structures as well as the American Specification (ASCE 2002), AS/NZS4673 (2001) and Eurocode 3 - Part 1.4 (EC3-1.4 2015) for stainless steel structures. It is shown that the AS/NZS4600 (2018), EC3-1.3 (2006) and AISI S100 (2016) generally provide conservative predictions for the carbon steel bolted connections. Both the ASCE (2002) and the EC3-1.4 (2015) provide conservative predictions for the stainless steel bolted connections. The EC3-1.3 (2006) generally provided more accurate predictions of failure mode for carbon steel bolted connections than the AS/NZS4600 (2018) and the AISI S100 (2016). The failure modes of stainless steel bolted connections predicted by the EC3-1.4 (2015) are more consistent with the test results compared with those predicted by the ASCE (2002).