• Title/Summary/Keyword: Environmental Restoration

Search Result 2,303, Processing Time 0.028 seconds

The Effects of pH Control on the Leaching Behavior of Heavy Metals within Tailings and Contaminated Soils : Seobo and Cheongyang Tungsten Mine Areas (광미와 오염토양 내 중금속 용출특성에 미치는 pH영향 : 청양과 서보중석광산)

  • 이평구;강민주;박성원;염승준
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.469-480
    • /
    • 2003
  • Laboratory leaching experiment study carried out to estimate a extent of heavy metals that could be leached out when acid rain(pH 5.0-3.0) and strong acidic solution(pH 2.5-1.0) reacted with tailings and contaminated soils from abandoned metal mines. In slightly to moderately acid conditions(pH 5.0-3.0), As, Pb and Zn dissolutions became significantly increased with decreased pH in tailing, while dissolution of these elements was very limited in contaminated soil. These results suggested that moderately acid rainwater leaches Pb, As and Zn from the tailings, while these elements would remain fixed in contaminated soil. In the pH range of 2.5-1.0(strongly acid condition), Zn, Cd and Cu concentrations of leachate rapidly increased with decreased pH in contaminated soil, while Pb, As and Co dissolutions became importantly increased in tailings. The experimental solubility of Zn. Cd and Cu was very low even at very low pH values(up to pH 1), except for CY4(Cheongyang mine). These can result from an incomplete dissolution or the presence of less soluble mineral phases. So, the solubility of heavy metals depends not only on the pH values of leachate but also on the speciation of metals associated with contaminated soils and tailings. The relative mobility of each element within failings at the pH 5.0-3.0 of the reaction solution was in the order of Pb>Zn>Cd>Co=Cu>As. In case of pH 2.5-1.0 of the reaction solution, the relative mobility of each element within contaminated soils and tailings were in the order of Zn>Cd>Cu>Co>Pb=As for contaminated soils, and Pb>Zn>Cd>hs>Co>Cu for tailings. The obtained results could be useful for assessing the environmental effects and setting up the restoration plan in the areas.

Vegetation Structure and Management Planning of Yongha Gugok in Woraksan National Park (월악산국립공원 용하구곡의 식생구조 및 관리방안)

  • Back, Seung-Jun;Kang, Hyun-Kyung;Kim, Sun-Hwa
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.4
    • /
    • pp.487-497
    • /
    • 2013
  • This study was conducted to suggest vegetation management plan for Gugok landscape maintenance and improvement by deducing the vegetation landscape factors inherent in Yongha Gugok and understanding vegetation structure through the investigate of existing vegetation and plant community structure of Yongha valley in Woraksan National Park. There were broad and flat rocks, natural layered stones, clear water, light stones, stream, valleys, waterfalls, Pinus densiflora and Acer pseudosieboldianum as a result of deducing natural factors on poetry. There were P. densiflora and A. pseudosieboldianum appeared as one of main vegetation landscape elements. The actual vegetation analysis results were as followed. The natural vegetation occupied 67.5% and it was classified as P. densiflora community, Quercus variabilis community, Q. variabilis-P. densiflora community, Q. variabilis-Q. serrata community, Q. serrata community, Q. mongolica community, Q. mongolica-P. densiflora community, Deciduous broad-leaved tree community. The artificial vegetation(18.7%) was classified as Q. serrata community-Larix kaempferi community, Q. mongolica- Castanea crenata community, L. kaempferi community, L. kaempferi-C. crenata community, fruticeta, L. kaempferi-Q. mongolica community. The grassland area(2.0%) was classified as Miscanthus sinensis community, Phragmites communis community, and other areas were classified as landscape tree planting area, farm, orchard, residential area. The representative vegetation were P. densiflora community, Q. variabilis-Q. serrata community, L. kaempferi community, Deciduous broad-leaved tree community in Yongha Gugok. The species diversity index of Shannon was 0.6274~0.9908 on the whole. Yongha Gugok, as a symbol of succession on confucianism and reverence for nature, should be preserved natural valley landscape being clean and wijungchuksa at the end of Joseon Dynasty and Japanese Colonial era. In this historical and cultural Gugok, vegetation landscape management plan is needed to landscape maintenance with P. densiflora community, density control with L. kaempferi community. And it is considered when natural disasters and artificial damages happened, P. densiflora-oriented vegetation restoration plan should be applied in order to restore.

Long-term Variations of Water Quality Parameters in Lake Kyoungpo (경포호에서 수질변수들의 장기적인 변화)

  • Kwak, Sungjin;Bhattrai, Bal Dev;Choi, Kwansoon;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.95-107
    • /
    • 2015
  • In order to identify long-term trends of water quality parameters in Lake Kyeongpo, Mann-Kendall test, Sen's slope estimator and linear regression were applied on data, with 15 parameters from three different sites and rainfall, monitored once in every two months from March to November during 1998~2013. Seasonal variation analysis only used Mann-Kendall test and Sen's slope estimator. Analysis result showed that salinity, transparency and nutrient variables (total phosphorus, dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen, ammonia nitrogen) were only parameters having statistically significant trend. In linear regression analysis, salinity (surface and bottom layer of all sites) and transparency (only at site 1), were figured out with statistically significant increasing trend, while in non-parametric statistical method, salinity and transparency in all sites (surface, middle, deep) were figured out with statistically significant increasing trend. Water quality parameters showing statistically significant decreasing trends were dissolved oxygen (surface layer of site 1 and bottom layer of sites 2 and 3), total phosphorus (sites 1 and 2), dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen and ammonia nitrogen in the linear regression analysis and, dissolved oxygen (bottom layer of all sites), total phosphorus, dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen and ammonia nitrogen in the non-parametric method. Seasonal trend analysis result showed that salinity, turbidity, transparency and suspended solids in spring, salinity, transparency, nitrate nitrogen and suspended solids in summer and temperature, salinity, transparency and suspended solids in fall were the variables depending on the season with increasing trends. In general, rainfall during the research period showed decreasing trend. The significant reduction trends of nutrients in Lake Kyeongpo were believed to be related to lagoon restoration and water management project run by Gangneung city and under-water wear removal, but further detailed studies are needed to know the exact causes.

Analysis of Environmental Factors and Change of Vascular Plant Species along an Elevational Gradients in Baekdansa, Mt. Taebaeksan National Park (태백산국립공원 백단사코스의 고도별 관속식물상 변화와 환경요인 분석)

  • An, Ji-Hong;Park, Hwan-Joon;Lee, Sae-rom;Seo, In-Soon;Nam, Gi-Heum;Kim, Jung-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.378-401
    • /
    • 2019
  • This study generated a list of plants in eight sections from the Baekdansa ticket office (874m) to Cheonjedan (1,560m) divided in the interval of 100m above sea level to examine the species diversity patterns and distribution changes of the vascular plants at different altitudes in Taebaeksan National Park. Four site surveys found a total of 385 taxa: 89 families, 240 genera, 345 species, 5 subspecies, 34 varieties, and 1 form. A result of analyzing the change of species diversity along elevational gradients showed that it decreased with increasing elevation and then increased from a certain section. A result of analyzing habitat affinity types showed that the proportion of forest species increased with increasing elevation. On the other hand, the ruderal species appeared at a high rate in the artificial interference section. A result of comparing the proportion of woody and herb plants showed that the woody plants gradually increased with elevation and rapidly decreased in the artificial interference section. On the other hand, the herb plants showed the opposite trend. A result of analyzing the change of distribution of species according to altitude with the DCA technique showed that the vascular plants were divided into three groups according to the elevation in order on the I axis with the boundaries at 900m and 1,300m above sea level. The arrangement of each stand from right to left along the altitude on the I axis with a significant correlation with warmth index (WI) confirmed that the temperature change along the altitude could affect the distribution of vascular plants, composition, and diversity. Therefore, the continuous monitoring is necessary to confirm ecological and environmental characteristics of vegetation, distribution ranges, changes of habitat. We expect that the results of this study will be used as the basic data for establishing the measurement measures related to the preservation of biodiversity and climate change.

An Analysis of Environmental Factors of Abandoned Paddy Wetlands as References and Changes in Land Cover Types in the Influence Area (묵논습지 환경요인 및 생태영향권 내 토지피복유형 변화 분석)

  • Park, MiOk;Kwon, SoonHyo;Back, SeungJun;Seo, JooYoung;Koo, BonHak
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.331-344
    • /
    • 2022
  • This study analyzed the characteristics of the soil and hydrological environment of abandoned paddy wetlands examined the changes in land cover type in the ecological affect area, analyzed the environmental factors of abandoned paddy wetlands, and examined the changes in land cover type in the ecological impact area. The ecological environment characteristics of the reference abandoned paddy wetlands were investigated through literature research, environmental spatial information service, and preliminary exploration of the abandoned paddy wetlands, and the basic data for the restoration of abandoned paddy wetlands ware provided by examining the changes in land cover type in the ecological impact area for 40 years. Through this study, it will be possible to manage the rapidly increasing number of abandoned farmland to be converted into wetlands so that it can perform functions equivalent to or greater than that of natural wetlands. In particular, as we checked the clues that abandoned paddy wetlands could spread to surrounding ecological influences through land cover changes, the study sites are highly likely to be reference wetlands, and if the topography, soil, water circulation system, and carbon reduction performance are analyzed carefully, it will be possible to standardize the development process. In addition, through the change in land cover, clues were confirmed that the abandoned paddy wetlands could spread to the surrounding ecological affect areas. The land cover type in the ecological impact area, forests was mainly distributed, but generally decreased rapidly in the last 10-20 years, and forests were changing from coniferous forests to broad-leaved forests, mixed forests, or grassland. It has not yet been fully called to the wetland, and it is found that it has maintained the form of barren or grassland, and as can be seen in the case of natural wetlands after more than 30 years after abandoned, it is expected that the transition will gradually proceed to wetlands that are structurally and functionally similar to natural wetlands.

A Study on the Characteristics and Model of Lotus Pond in Joseon Royal Tombs (조선왕릉 연지(蓮池)의 특성과 전형)

  • Ko, Seung-Kwan;Koo, Bon-Hak;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.3
    • /
    • pp.116-123
    • /
    • 2011
  • This study investigates the characteristics(form, material, structure, method of construction, vegetation) and model of lotus pond in Joseon Royal Tombs for conservation and restoration. The objects of study are the lotus pond of Namyangju Gwangreung, Hyoreung, Gimpo Jangreung and Sungreung that are well-preserved and the record is remaining. The form is two plane types, square shaped include an island and square shaped. The pond is 7.5~81m in width and 6.5~45m in length and the island is 8~16m in diameter. The depth of water is 0.5~1.2m and the cross section form is narrow bottom and wide top. The material of shore protection is soil in Hyoreung, Gimpo Jangreung and Sungreung. The bottom is mud in all sites. I think that the main material of the lotus pond in Joseon Royal Tombs is soil. The lotus pond is built by soil bank in the structure and method of construction. The water supply and drainage are worked through the culvert. There are many kinds of plants in the lotus pond today, however I think that the model of vegetation of lotus pond in Joseon Royal Tombs is lotus the inside, pine tree, fir tree and flowers the around and pine tree the inside of island in compared the present and the old literature. In comparison with the lotus pond in Joseon Royal Tombs and the lotus pond in the Joseon palace, the material is the biggest difference. The main material is soil in Royal Tombs but isodomic in Royal Palace. I think that the difference of material in between two causes the difference of structure and method of construction. The Royal Tombs is valuable in architecture, landscape and esthetics, this study investigated the characteristics and model of lotus pond in Joseon Royal Tombs. I think that this study serves as a momentum to find a traditional technique in Royal water space and offer the foundation to plan in the contemporary water space.

Prediction of Acer pictum subsp. mono Distribution using Bioclimatic Predictor Based on SSP Scenario Detailed Data (SSP 시나리오 상세화 자료 기반 생태기후지수를 활용한 고로쇠나무 분포 예측)

  • Kim, Whee-Moon;Kim, Chaeyoung;Cho, Jaepil;Hur, Jina;Song, Wonkyong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 2022
  • Climate change is a key factor that greatly influences changes in the biological seasons and geographical distribution of species. In the ecological field, the BioClimatic predictor (BioClim), which is most related to the physiological characteristics of organisms, is used for vulnerability assessment. However, BioClim values are not provided other than the future period climate average values for each GCM for the Shared Socio-economic Pathways (SSPs) scenario. In this study, BioClim data suitable for domestic conditions was produced using 1 km resolution SSPs scenario detailed data produced by Rural Development Administration, and based on the data, a species distribution model was applied to mainly grow in southern, Gyeongsangbuk-do, Gangwon-do and humid regions. Appropriate habitat distributions were predicted every 30 years for the base years (1981 - 2010) and future years (2011 - 2100) of the Acer pictum subsp. mono. Acer pictum subsp. mono appearance data were collected from a total of 819 points through the national natural environment survey data. In order to improve the performance of the MaxEnt model, the parameters of the model (LQH-1.5) were optimized, and 7 detailed biolicm indices and 5 topographical indices were applied to the MaxEnt model. Drainage, Annual Precipitation (Bio12), and Slope significantly contributed to the distribution of Acer pictum subsp. mono in Korea. As a result of reflecting the growth characteristics that favor moist and fertile soil, the influence of climatic factors was not significant. Accordingly, in the base year, the suitable habitat for a high level of Acer pictum subsp. mono is 3.41% of the area of Korea, and in the near future (2011 - 2040) and far future (2071 - 2100), SSP1-2.6 accounts for 0.01% and 0.02%, gradually decreasing. However, in SSP5-8.5, it was 0.01% and 0.72%, respectively, showing a tendency to decrease in the near future compared to the base year, but to gradually increase toward the far future. This study confirms the future distribution of vegetation that is more easily adapted to climate change, and has significance as a basic study that can be used for future forest restoration of climate change-adapted species.

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.

Performance evaluation of hyperspectral bathymetry method for morphological mapping in a large river confluence (초분광수심법 기반 대하천 합류부 하상측정 성능 평가)

  • Kim, Dongsu;Seo, Youngcheol;You, Hojun;Gwon, Yeonghwa
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.195-210
    • /
    • 2023
  • Additional deposition and erosion in large rivers in South Korea have continued to occur toward morphological stabilization after massive dredging through the four major river restoration project, subsequently requiring precise bathymetry monitoring. Hyperspectral bathymetry method has increasingly been highlighted as an alternative way to estimate bathymetry with high spatial resolution in shallow depth for replacing classical intrusive direct measurement techniques. This study introduced the conventional Optimal Band Ratio Analysis (OBRA) of hyperspectral bathymetry method, and evaluated the performance in a domestic large river in normal turbid and flow condition. Maximum measurable depth was estimated by applying correlation coefficient and root mean square error (RMSE) produced during OBRA with cascadedly applying cut-off depth, where the consequent hyperspectral bathymetry map excluded the region over the derived maximum measurable depth. Also non-linearity was considered in building relation between optimal band and depth. We applied the method to the Nakdong and Hwang River confluence as a large river case and obtained the following features. First, the hyperspectal method showed acceptable performance in morphological mapping for shallow regions, where the maximum measurable depth was 2.5 m and 1.25 m in the Nakdong and Hwang river, respectively. Second, RMSE was more feasible to derive the maximum measurable depth rather than the conventional correlation coefficient whereby considering various scenario of excluding range of in situ depths for OBRA. Third, highly turbid region in Hwang River did not allow hyperspectral bathymetry mapping compared with the case of adjacent Nakdong River, where maximum measurable depth was down to half in Hwang River.

Macrobenthic Community Structure during Spring and Summer Season in the Environmental Conservation Area, Korea (환경보전해역에 서식하는 대형저서동물의 춘계와 하계의 군집구조)

  • Choi, Byoung-Mi;Yun, Jae Seong;Kim, Seong Gil;Kim, Seong-Soo;Choi, Ok In;Son, Min Ho;Seo, In-Soo
    • Journal of Marine Life Science
    • /
    • v.1 no.2
    • /
    • pp.95-108
    • /
    • 2016
  • This study was performed to investigate the community structure of macrobenthic assemblages in the Environmental Conservation area, Korea. Benthic animals were collected by van Veen grab sampler at spring (May) and summer (August) 2009. The total species number and mean density were 195 species 5.6 m-2 and 667 individuals m-2, respectively. Polychaetes were the most dominant faunal group in species (96 species) and abundance (431 individuals m-2). The major dominant species were the polychaetes Lumbrineris longifolia (76±224 individuals m-2), Mediomastus californiensis (42±117 individuals m-2), Tharyx sp.3 (26±110 individuals m-2), the bivalvia Theora fragilis (54±78 individuals m-2) and the amphipod Eriopisella schellensis (70±146 individuals m-2). Based on the cluster and nMDS ordination analysis, macrobenthic communities were divided into three faunal groups. The first group was characterized by high abundance of the polychaeta Sternaspis scutata and the amphipod Ampelisca cyclops iyoensis, which is located by most stations of Hampyeong Bay and St. 4 of Deungnyang Bay. The second group was numerically dominated by the polychaeta Capitella capitata at St. 4 and St. 5 in Gamak Bay where was most pollutant area. Finally, the third group was dominated by the polychaetes Heteromastus filiformis, Tharyx sp.3 and the amphipod Sinocorophium sinensis. Therefore, geochemical characteristics such as the bay shape and pollution gradient may be important factors controlling of the macrobenthic community structure in Environment Conservation Area.