• Title/Summary/Keyword: Environmental Resistance Performance

Search Result 469, Processing Time 0.028 seconds

Structural Performance Evaluation of Floating PV Power Generation Structure System (수상 부유식 태양광발전 구조물의 구조적 성능 평가)

  • Choi, Jin Woo;Seo, Su Hong;Joo, Hyung Joong;Yoon, Soon Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1353-1362
    • /
    • 2014
  • In recent years, numerous environmental problems associated with the excessive use of fossil fuel are taking place. For an alternative energy resource, the importance of renewable energy and the demands of facilities to generate renewable energy are continuously rising. To satisfy such demands, a large number of photovoltaic energy generation structures are constructed and planned with large scale. However, because these facility zones are mostly constructed on land, some troubles are occurred such as rising of construction cost due to the cost of land use, environmental devastation, etc. To solve such problems, the floating type photovoltaic energy generation system using FRP members have been developed in Korea. FRP members are recently available in civil engineering applications due to many advantages such as high strength, corrosion resistance, light weight, etc. and they are suitable to fabricate the floating structures because of their material properties. In this study, the analytical and experimental investigations to evaluate the structural performance of floating PV generation structure and SMC FRP vertical member which is used to fabricate the structure were conducted. The static and dynamic performances of floating PV generation structure are evaluated through the FE analysis and the experiment, respectively. Moreover, the structural safety evaluation and buckling analysis of SMC FRP vertical compression member are also conducted by the FE analysis, and the structural behavior of SMC FRP member under compression and pullout is investigated by the experiments. From this study, it was found that the structural system composed of pultruded FRP and SMC FRP members are safe enough to resist externally applied loads.

Fabrication and Characterization of NiCo2O4/Ni Foam Electrode for Oxygen Evolution Reaction in Alkaline Water Splitting (알칼라인 수전해 산소 발생 반응을 위한 NiCo2O4/Ni foam 전극 제조 및 특성 평가)

  • Kwon, Minsol;Go, Jaeseong;Lee, Yesol;Lee, Sungmin;Yu, Jisu;Lee, Hyowon;Song, Sung Ho;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.411-417
    • /
    • 2022
  • Environmental issues such as global warming due to fossil fuel use are now major worldwide concerns, and interest in renewable and clean energy is growing. Of the various types of renewable energy, green hydrogen energy has recently attracted attention because of its eco-friendly and high-energy density. Electrochemical water splitting is considered a pollution-free means of producing clean hydrogen and oxygen and in large quantities. The development of non-noble electrocatalysts with low cost and high performance in water splitting has also attracted considerable attention. In this study, we successfully synthesized a NiCo2O4/NF electrode for an oxygen evolution reaction in alkaline water splitting using a hydrothermal method, which was followed by post-heat treatment. The effects of heat treatment on the electrochemical performance of the electrodes were evaluated under different heat-treatment conditions. The optimized NCO/NF-300 electrode showed an overpotential of 416 mV at a high current density of 50 mA/cm2 and a low Tafel slope (49.06 mV dec-1). It also showed excellent stability (due to the large surface area) and the lowest charge transfer resistance (12.59 Ω). The results suggested that our noble-metal free electrodes have great potential for use in developing alkaline electrolysis systems.

Performance Based Evaluation of Concrete Strength and Freeze-Thaw Resistance from Wind Speed - Sunlight Exposure Time Effect (풍속과 일조시간에 따른 콘크리트의 강도 및 동결융해 저항성 성능중심평가)

  • Kim, Tae-Kyun;Choi, Seung-Jai;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.49-58
    • /
    • 2017
  • The phenomena that we experience in everyday life such as snow, rain, wind, and temperature are referred to as weather, and the average state of atmospheric phenomena that occur over a long period of time in a specific region is referred to as climate. In addition, significant variation of climate compared to the average state is referred to as climate change. Concrete structures can have various problems when exposed to elements. Among the problems, the freeze-thaw problem due to extreme climatic factors such as heavy rain and snowfall has become a particularly significant issue recently. The concrete that has been subjected to repeated freeze-thaw rather than too high or low temperature shows serious degradation of durability, and the performance of structures with degraded performance is difficult to recover. Therefore, in this study, concrete durability performance with respect to freeze-thaw from curing conditions change due to wind speed and sunshine exposure time. Concrete freeze-thaw experiment are performed. using wind speed and sunlight exposure time. Also, performance based evaluation through the satisfaction curve based on the freeze-thaw test results are performed.

Evaluation of Local Damages and Residual Performance of Blast Damaged RC Beams Strengthened with Steel Fiber and FRP Sheet (폭발 손상을 입은 강섬유 및 FRP 시트 보강 철근콘크리트 보의 국부손상 및 잔류성능 평가)

  • Lee, Jin-Young;Jang, Dae-Sung;Kwon, Ki-Yeon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.627-634
    • /
    • 2014
  • In this study, standoff detonation tests and static beam tests on $160{\times}290{\times}2200mm$ RC beams were conducted to investigate the effect of local damage on the flexural strength and ductility index. And also, blast resistance of RC beams strengthened with steel fiber and FRP sheet were evaluated by these tests. The standoff detonation tests were performed with charge weight of 1kg and standoff distance of 0.1m. After the tests, crater diameters and loss weights of specimens were measured to evaluate the local damage of specimens. Flexural strength and ductility index were measured by conducting the static beam tests on the damaged and undamaged specimens. As a test results, normal concrete specimen(NC) showed relatively large crater and spall diameters that caused weight loss of 23.5kg as a local damage. Whereas, steel fiber reinforced concrete specimen(SFRC) and FRP sheet retrofitted specimens(NC-F, NC-FS) showed higher blast resistance than NC by reducing crater size and weight loss. Flexural strength and ductility index were decreased in case of local damaged specimens by detonation. Especially, large decrease of flexural strength was shown in NC as compared with intact specimen and brittle failure was occurred due to buckling of compressive reinforcement. In case of specimens strengthened with steel fiber and FRP sheet, residual flexural strength and ductility index were increased as compared with NC. In these results, it is concluded that critical local damage can be occurred unless enough standoff distance can be assured even if the charge weight is small. and it is verified that strengthening method using steel fiber and FRP sheet can increase blast resistance.

Physiological Responses and Growth Performance of Alnus firma and Alnus hirsuta Seedlings to Artificial Soil Acidification (인위적인 토양산성화에 대한 사방오리나무와 물오리나무 묘목의 생리반응 및 생장특성)

  • Choi, Dongsu;Toda, Hiroto
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.5
    • /
    • pp.145-153
    • /
    • 2012
  • To obtain basic information for evaluating resistance of soil acidification for growth, net photosynthesis, $N_2$ fixation rate and nutrient status of Alnus firma and Alnus hirsuta seedlings grown in brown forest soil acidified with $H_2SO_4$ or $HNO_3$ solution were investigated (control (pH=5.9), LN (pH=5.0; Low levels of Nitric acid), HN (pH=4.0; High levels of Nitric acid), LS (pH=5.0; Low levels of Sulfuric acid), and HS (pH=4.0; High levels of Sulfuric acid)). The shoot dry weight of Alnus firma and Alnus hirsuta and the root dry weight of Alnus hirsuta seedlings grown in the HN, LS and HS were significantly less than that of the seedlings grown in the control. The Chlorophyll a/b ratio in leaves of Alnus firma at LN, LS and HS was significantly lower than that of control. The concentration of N in leaves of Alnus hirsuta at HS was significantly higher than that of control. The net photosynthetic rate of Alnus firma and Alnus hirsuta seedlings at LN and HN was higher than that of control. Based on the results, we concluded that the negative effects of soil acidification due to sulfate deposition are greater than those of soil acidification due to nitrate deposition on growth, net photosynthesis and $N_2$ fixation rate of Alnus firma more than Alnus hirsuta.

RESEARCH TRENDS IN THE CELLULOSE REINFORCED FIBROUS CONCRETE IN USA

  • Soroushian, Parviz;Ravanbakhsh, Sizvosh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.3-23
    • /
    • 1997
  • The growth in fast-track construction and repair has prompted major efforts to develop high-early-strength concrete mix compositions. Such mixtures rely on the use of relatively high cement contents and accelerator dosages to increase the rate of strength development. The measures, however, seem to compromise the long-term performance of concrete in applications such as full-depth patches as evidenced by occasional premature deterioration of such patches. The hypothesis successfully validated in this research was that traditional methods of increasing the early-age strength of concrete, involving the use of high cement and accelerator contents, increase the moisture and thermal movements of concrete. Restraint of such movements in actual field conditions, by external or internal restraining factors, generates tensile stresses which introduced microcracks and thus increase the permeability of concrete. This increase in permeability accelerates various processes of concrete deterioration, including freeze-thaw attack. Fiver reinforcement of concrete is an effective approach to the control of microcrack and crack development under tensile stresses. Fibers, however, have not been known of accelerating the process of strength gain in concrete. The recently developed specialty cellulose fibers, however, were found in this research to be highly effective in increasing the early-age strength of concrete. This provides a unique opportunity to increase the rate of strength gain in concrete without increasing moisture an thermal movements, which actually controlling the processes of microcracking and racking in concrete. Laboratory test results confirmed the desirable resistance of specialty cellulose fiber reinforced High-early-strength concrete to restrained shrinkage microcracking an cracking, and to different processes of deterioration under weathering effects.

  • PDF

Comparison of biological and chemical assays for measuring the concentration of residual antibiotics after treatment with gamma irradiation

  • Nam, Ji-Hyun;Shin, Ji-Hye;Kim, Tae-Hun;Yu, Seungho;Lee, Dong-Hun
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.614-621
    • /
    • 2020
  • Antibiotic pollution is one of the factors contributing to the spread of antibiotic-resistant bacteria in the environment. Advanced oxidation and irradiation processes have been introduced to eliminate antibiotics from water and wastewater. However, few studies have reported the toxic effects of residual antibiotics and their byproducts induced by a treatment system. In this study, we compared the efficacies of chemical (high-performance liquid chromatography (HPLC)) and biological (antimicrobial susceptibility test) assays for measuring the concentrations of residual antibiotics after gamma irradiation for degrading amoxicillin, cephradine, lincomycin, and tetracycline. The concentrations of residual antibiotics estimated using the two assay methods were almost identical, except cephradine. In the case of cephradine, inhibited bacterial growth was observed that was equivalent to twice the concentration measured by HPLC in the samples subjected to gamma irradiation. The observed inhibition of bacterial growth suggested the generation of potentially toxic intermediates following antibiotic degradation. These results indicate that biological and chemical assays should be used in concert for monitoring antibiotic contamination and the toxic derivatives of antibiotic degradation. The results demonstrate that these four antibiotics can be decomposed by 2.0 kGy gamma-irradiation without toxic effects of their byproducts.

Performance Enhancement of Anaerobic Treatment of Waste Sludge by Chemical Pretreatment (화학적 전처리를 통한 혐기성 슬러지 처리효율의 향상)

  • 허준무;박종안;손부순
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.16-25
    • /
    • 1998
  • Laboratory-scale experiment using anaerobic fluidized bed reactor was carried out to investigate the prehydrolysis step with caustic soda on the treatment efficiency of anaerobic sludge treatment, since the overall rate-limiting step for the complete anaerobic digestion of sludge was the hydrolysis step by extracellular bacterial enzymes of insoluble polymeric molecules. Reactors received a sludge which had not been pretreated, a 50-50 mixture of pretreated and untreated sludge, and the fully pretreated sludge. Hydraulic retention time of 10, 5, 2.5 days and 1 day were applied with an respective equivalent organic loading rate of 1.17, 2.23, 4.17, 11.24 gCOD/L/d. Reactor with the untreated sludge did not archieve adequate digestion even at the HRT of 5 days, and reactor, which received the 50-50 mixture, operated well at the HRT of 5 days, but began to show signs of unstable digestion at the HRT of 2.5 days. While, reactor, which was fed the hydrolyzed sludge, operated reasonably well at the 2.5 days, but was showing somewhat decrease in removal efficiencies. Results, therefore, have substantiated that the limiting reaction in the anaerobic treatment process is hydrolysis. The soluble COD did not significantly accumulate in the reactor as organic acid form, even when they were highly stressed. It was believed that this resistance to a build-up of organic acids and soluble COD behavior was mainly due to the maintenance of the methane bacteria in the fixed-film system which prevents washout as the organic loading increased. The anaerobic fluidized bed reactor was therefore effective for the digestion of waste activated sludge at short HRT.

  • PDF

Development of Liquid Fertilizer Spreading System for a Sloped Land (경사지용 가축분뇨 액비 살포장치 개발)

  • Oh, I.H.;Jang, C.H.;Kim, W.K.;Song, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2010
  • A major problem within the agricultural/farming community concerns the enormous amount of manure produced by livestock; one possible solution to this problem is to use the animal slurry as a liquid fertilizer. While there are several areas where this fertilizer could be used, one promising area of application is within chestnut tree fields. However, since most of these fields are located on slopes of varying grades and not on flat land, a different spread system is required. Generally, chemical fertilizer is spread in the chestnut field manually by hand; not only does this require a great deal of manpower it is also very difficult and hard work. In our lab experiment, we investigated the relationship between the amount of fertilizer spread and the length of pipe used at varying pressure levels. The hose in our system utilized PVC piping with evenly spaced holes for the fertilizer to dissipate. We initially found that the amount of spread was greatly reduced by reducing pipe pressure. While the difference of the amount of spread during fertilizing was not great, we did find that the reduction of the spread could be correlated to the frictional resistance of the inner lining of the pipe. Based on this, we hypothesized that an increase in pipe pressure would yield a consistent spread. Additionally, a similar outcome could be obtained by regulating the distance of the holes in the pipe and their diameter.

A Study on the Long-Term Behavior Characteristics of Buoyancy-Resistant Permanent Anchor (부력저항 영구앵커의 장기거동 특성에 관한 연구)

  • Huh, Byungjoo;Kim, Chanki;Jung, Yonggun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.27-35
    • /
    • 2010
  • The structures built under the groundwater level are affected by the buoyancy force, which is hydrostatic pressure in the up direction. Recently, buoyancy-resistant anchor method has been applied in many cases of the construction of the important structure of large size, which is built under the groundwater level so that it takes high uplift pressure. Even if the construction cost of the method is very high, it surely increases the safety rate. However, the diagnosis of the performance of the buoyancy-resistant permanent anchor and the investigation of resistance mechanism are still insufficient. Especially, the long-term behavior of the anchor has not been studied well due to the difficulty in observation procedure. The contribution of this paper is the establishment of reasonable design methodology. We have measured anchor axial forces for 10 years after the construction, by using an automated measurement and a manual measurement by establishing a load cell in anchor head. Through the data collected from the measurements, we analyze the construction-step behavior of the anchor according to the self-weight variation of the building and the long-term behavior (i.e. movement within 10 years after the construction) of the anchor according to the passage of time.