• Title/Summary/Keyword: Environmental Property

Search Result 1,623, Processing Time 0.028 seconds

Glass Formulations for Vitrification of Low- and Intermediate-level Waste

  • Kim, Cheon-Woo;Park, Jong-Kil;Ha, Jong-Hyun;Song, Myung-Jae;Lee, Nel-Son;Kong, Peter-C.;Anderson, Gary-L.
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.936-942
    • /
    • 2003
  • In order to develop glass formulations for vitrifying Low-and Intermediate-Level radioactive Wastes (LILW) from nuclear power plants of Korea Hydro & Nuclear Power (KHNP) Co., Ltd., promising glass formulations were selected based on glass property model predictions for viscosity, electrical conductivity and leach resistance. Laboratory measurements were conducted to verify the model predictions. Based on the results, the models for electrical conductivity, US DOE 7-day Product Consistency Test (PCT) elemental release, and pH of PCT leachate are accurate for the LILW glass formulations. However, the model for viscosity was able to provide only qualitative results. A leachate conductivity test was conducted on several samples to estimate glass leach resistance. Test results from the leachate conductivity test were useful for comparison before PCT elemental release results were available. A glass formulation K11A meets all the KHNP glass property constraints, and use of this glass formulation on the pilot scale is recommended. Glass formulations K12A, K12B, and K12E meet nearly all of the processing constraints and may be suitable for additional testing. Based on the comparison between the measured and predicted glass properties, existing glass property models may be used to assist with the LILW glass formulation development.

Strain-dependent-deformation property of Gyeongju compacted bentonite buffer material for engineered barrier system

  • Ivan Jeff Navea;Jebie Balagosa;Seok Yoon;Yun Wook Choo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1854-1862
    • /
    • 2024
  • This study aims to investigate the strain-dependent-deformation property of Gyeongju bentonite buffer material. A series of unconfined compressive tests were performed with cylindrical specimens prepared at varying dry densities (𝜌d = 1.58 g/cm3 to 1.74 g/cm3) using cold isostatic pressing technique. It is found that as 𝜌d increase, the unconfined compressive strength (qu), failure strain, and elastic modulus (E) of Gyeongju compacted bentonite (GCB) increases. Normalized elastic modulus (Esec/Emax) degradation curves of GCB specimens are fitted using Ramberg-Osgood model and the elastic threshold strain (𝜀e,th) is determined through the fitted curves. The strain-dependency of E and Poisson's ratio (v) of GCB were observed. E and v were measured constant below 𝜀e,th of 0.14 %. Then, E decreases while v increases after exceeding the strain threshold. The Esec/Emax degradation curves of GCB in this study suggests wider linear range and higher linearity than those of sedimentary clay in previous study. On top of that, the influence of 𝜌d is observed on Esec/Emax degradation curves of GCB, showing a slight increase in 𝜀e,th with increase in 𝜌d. Furthermore, an empirical model of qu with 𝜌d and a correlation model between qu and E are proposed for Gyeongju bentonite buffer materials.

Studies on Mutagenicity of Ag-Os, a Water Treatment Agent (수질 정화제로 개발한 Ag-Os의 변이원성 시험)

  • Lee, Yong-Kyu;Baek, Nam-Jin;Shin, Choon-Whan
    • Environmental Mutagens and Carcinogens
    • /
    • v.18 no.1
    • /
    • pp.43-46
    • /
    • 1998
  • In order to evaluated the mutagenic potential of Ag-Os produced by receiving Ag ion at the carrier, 2 types of mutagenecity tests were performed. No mutagenic potential was shown in bacterial reverse multation test using Salmonella typhimurim TA 1535, TA 1537, TA 98, TA 100. No DNA-damaging property was shown in Rec-assay using Bacillus subtilis(Rec+) and Bacillus subtilis (Rec-). These results indicate that the Ag-Os does not cause reverse mutation and DNA-damaging property

  • PDF

Physical and Chemical Weathering Indices for Biotite Granite and Granitic Weathered Soil in Gyeongju

  • Ban, Jae-Doo;Moon, Seong-Woo;Lee, Seong-Won;Lee, Joo-Gong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.451-462
    • /
    • 2017
  • Physical weathering caused by external forces and chemical weathering caused by the decomposition or alteration of constituent materials are the two factors that dominate the mechanical properties of rocks. In this study, a field investigation was undertaken to identify the physical and chemical weathering characteristics of the biotite granite and granitic weathered soils in Gyeongju, South Korea. Samples were collected according to their grade of weathering and subjected to modal analysis, XRD analysis, XRF analysis, physical property tests, particle size distribution tests, and slake durability tests. Modal and XRD analysis identified these rocks as biotite granite; secondary alteration minerals were not observed. Physical property tests and particle size distribution analyses indicate an average porosity of 41.28% and a sand content of > 90 wt.%. These values are somewhat higher than those of granites in general. The results of the slake durability test and XRF analyses show that the physical and chemical weathering indices of the samples vary with the degree of weathering.

Use of water retention curves predicted from particle-size distribution data for simulation of transport of Benzo[a]pyrene in soil

  • Cho Young-A;Hwang Sang-Il;Jang Yong-Chul;Lee Dong-Soo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.216-219
    • /
    • 2006
  • Water retention curve (WRC), one of soil hydraulic properties, is often approximated by property-transfer models (PTMs). Using the PTMs, we can estimate the WRCs from other physical properties such as particle-size distribution (PSD). The objective of this work was to investigate the performance of two PTMs with different origins for numerical simulations on transport of Benzo[a]pyrene in a soil. To do this, we chose both PTMs with different origins, i.e., (1) the lognormal distribution model (L anti NL models), and (2) the modified $Kov\'{a}cs$ model (MK model). The MK model showed tile worse performance in estimation of the WRCs. When transport of B[a]P was simulated, the MK model predicted to move farther than the L and NL models did, indicating that transport of B[a]P in a soil can be greatly influenced by the choice of PTMs.

  • PDF

A Study on Pollution Property of Urban River Inflow in Regulating Reservoir (조정지댐에 유입하는 도시하천 오염특성에 관한 연구)

  • Chang, In-Soo;Park, Ki-Bum;Lee, Won-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.935-943
    • /
    • 2006
  • This study focuses on analyzing the inflow characteristic of contaminants of city water that flows into a main water system like a reservoir, and intends to provide basic data which can be efficiently reflected on water quality management policy and decision making of a reservoir. The conclusion obtained from the analysis of the inflow of a main water system by analyzing the inflow property of city water contaminants is as follows. In the case of Chungju-cheon stream which is the city water, pollution load from the basic outflow is low when it rains, and with high load of basic outflow during the dry season, due to the discharge of pollutants from the city, the quality of water becomes worse. In the case of Chungju-cheon stream, average BOD is $4.53mg/{\ell}$ when it rains, and the contaminants increase and flow in about 7.8% compared to the average BOD during the average droughty season. The average SS concentration in water is $798.67mg/{\ell}$ and increased 97.2% compared to the average droughty season.

Analysis of Characteristics of Slurry and Thermal Insulation Materials Using Hauyne Cement

  • Kim, Tae Yeon;Jo, Ki Sic;Chu, Yong Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.468-473
    • /
    • 2019
  • This study focused on manufacturing an inorganic insulation material set with various amounts of calcium-sulfoaluminate (CSA) (hauyne) content for enhancing both workability (demolding, handling) and the high thermal insulating property. To carry out the experiment, the amounts of CSA utilized were 5%, 10%, 15%, and 20%, with anhydrous gypsum added in equal proportion to produce a stable formation. As the content of CSA increased, a sinking phenomenon occurred because of the hydration reaction from the slurry, so it was difficult to utilize a retarder normally used in the cement manufacturing process. However, an RCOOM surfactant was able to solve the local clumping problem from cement and CSA and obtain a rapid retarding effect, so it was included in this process at 0.3%. Furthermore, the cement fineness was not 7000 ㎠/g but rather 3300 ~ 4000 ㎠/g to prevent a rapid temperature increase in the slurry. The specific gravity of the sample manufactured with 20% CSA was approximately 0.11 g/㎤, and its thermal conductivity was 0.041 W/m·K, providing an excellent insulating property.

Stability and Environmental Safety of a Nanosized Agroformulation by Using Gamma-irradiation Technique (감마선을 이용하여 제조한 농업용 나노제제의 보존성 및 환경안전성)

  • Park, Hae-Jun;Kim, Hwa-Jung;Choi, Jin-Su
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.171-176
    • /
    • 2013
  • In previous study, the novel nanosized curdlan-silica complex for a sustain-releasing effect was developed by using gamma-irradiation. It can be applicable to use in various sustainr-eleasing formulation in agriculture industry. This study was conducted to investigate its storage stability and environmental toxicity in an accelerated condition. The complex samples were treated with high temperature condition ($65^{\circ}C$) during 3 weeks, and then sustain-releasing property of complex was verified thereby using Ion Chromatography on a weekly basis. The morphology of the complex was characterized using scanning electron microscopy (SEM). Results of Ion Chromatography analysis showed that sample treated for 3 weeks was similar to sustain-releasing pattern of non-treatment sample. We verify concluded that the complex is able to keep its sustain-releasing property and sustained-releasing in 3 years. Also the formulation has no environmental toxicity.

Monitoring physical and chemical properties of soil in Chungcheongbuk-do

  • Yun-Gu Kang;Jae-Han Lee;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.719-727
    • /
    • 2022
  • The soil physical and chemical properties are the main factors that influence plant productivity and soil fertility. Since 1999, South Korea has been conducting a survey on changes in the agricultural environment survey every four years. The purpose of the present study is to monitor the physical and chemical properties of soil in Chungcheongbuk-do. Soil samples were collected from the exact sites of the aforementioned environment survey, and land use and cultivated crops were also investigated. From a Pearson correlation analysis, it was found that the total carbon contents were most negatively affected by the soil depth. The bulk density of soil increased up to a depth of 40 cm but decreased to a depth of 60 cm. The porosity and moisture of soil generally decreased, but the porosity increased at a depth of 50 - 60 cm. Chemical properties of soil gradually decreased with an increase of the soil depth from 0 to 70 cm, but little change was observed in soil pH with soil depth. In addition, the organic matter contents of the soil at a depth of 30 cm or more were below the optimal range. The soil of Chungcheongbuk-do thus requires organic matter application as a whole, and correction of items that are partially out of the optimal range is necessary.

SUPPRESSION OF HYDROGEN CONSUMING BACTERIA IN ANAEROBIC HYDROGEN FERMENTATION

  • Park, Woo-Shin;Jang, Nam-J.;Hyun, Seung-H.;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.181-190
    • /
    • 2005
  • Severe loss or hydrogen occurred in most anaerobic hydrogen fermentation reactors. Several selected methods were applied to suppress the consumption of hydrogen and increase the potential of production. As the first trial, pH shock was applied. The pH of reactor was dropped nearly to 3.0 by stopping alkalinity supply and on]y feeding glucose (5 g/L-d). As the pH was increase to $4.8{\pm}0.2,$ the degradation pathway was derived to solventogenesis resulting in disappearance of hydrogen in the headspace. In the aspect of bacterial community, methanogens weren't detected after 22 and 35 day, respectively. Even though, however, there was no methanogenic bacterium detected with fluorescence in-situ hybridization (FISH) method, hydrogen loss still occurred in the reactor showing a continuous increase of acetate when the pH was increased to $5.5{\pm}0.2$. This result was suggesting the possibility of the survival of spore fanning acetogenic bacteria enduring the severely acidic pH. As an alternative and additive method, nitrate was added in a batch experiment. It resulted in the increase of maximum hydrogen fraction from 29 (blank) to 61 % $(500\;mg\;NO_3/L)$. However, unfortunately, the loss of hydrogen occurred right after the depletion of nitrate by denitrification. In order to prevent the loss entangled with acetate formation, $CO_2$ scavenging in the headspace was applied to the hydrogen fermentation with heat-treated sludge since it was the primer of acetogenesis. As the $CO_2$ scavenging was applied, the maximum fraction of hydrogen was enhanced from 68 % to 87 %. And the loss of hydrogen could be protected effectively.