• Title/Summary/Keyword: Environmental Elements

Search Result 2,863, Processing Time 0.026 seconds

The Latent Heat Exchange on the Ground (지표면 잠열 이동에 관한 연구)

  • Lee, Bu-Yong;Haginoya, Shigenori
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.1061-1068
    • /
    • 2011
  • Evapotranspiration is one of the important elements related water cycle and there is many kind of measurement method of evapotranspiration today. This study developed mini lysimeter for the purpose of direct measurement of evapotranspiration and installed on 5th, July, 2010 at the field of MRI which located at Tsukuba, Ibaraki, Japan for continuous measurement and understand relation between evapotranspiration and meteorological elements expecially radiation elements. And compared the evapotranspiration data of lysimeter with Bowen Ratio Method. The result of this study is as follows; There is high related with solar radiation and evapotranspiration with $R^2$=0.947. and 46 % of solar radiation converted into evapotranspiration during clear 5 days. In net radiation also highly related with evapotranspiration, we can derive evapotranspiration is mainly controlled by radiation energy in clear days. From the 104 days data, there is only 9 % difference between Bowen Ratio Method and evapotranspiration of lysimeter which was developed from this study is very useful to estimate evapotranspiration at field site with simple and high accuracy. High accuracy and resolution measurement of evapotranspiration by lysimeter can give a chance further study of meteorological phenomena of on ground expecially in night time condensation which means abnormal energy flow.

Case Analysis of Rural Experiential Education Programs based on Education for Sustainable Development (지속가능발전교육 기반 농촌 체험교육 프로그램 운영 사례 분석)

  • Kim, Youngsoon;Yoon, Hyunhee;Oh, Youngsub
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.spc
    • /
    • pp.635-650
    • /
    • 2016
  • This study analyzed rural experiential educational programs that are currently in operation and examined the programs' reflection of Education for Sustainable Development (ESD) to explore the significance of those programs in terms of the ESD. In particular, this study analyzed cases of rural experiential educational programs from four villages in the capital region, Gyeongsang, Jeolla, and Chungcheong. The analysis results are as follows. Four villages' experiential educational programs share similar activities, such as nature experience, farming, traditional food and culture, games in nature, and craft. Each village has special programs and managements according to their geographical and environmental conditions. In addition, those programs are related to the ESD elements of health food, and cultural diversity (in sociocultural area) and of species diversity and environmental issues (in environmental area). On the other hand, the ESD elements in economic areas are not related to those programs. In addition, most of the villages plan and run experiential educational programs to keep and develop their own villages' sustainability. Rural experiential educational programs need to include various elements of ESD to develop rural communities.

Coagulation of the Metal-Plating Wastewater using Coal Fly Ash (비산회를 이용한 도금폐수의 응집처리)

  • 연익준;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.37-45
    • /
    • 2002
  • The Purpose of this study is to reduce environmental problems caused by landfill of bituminous coal fly ash emitted from the power plant and to reuse it. First of all, we experimented that Al and Si elements were extracted from fly ash and investigated that extracted Al and Si elements night use a coagulant. The extraction was carried out under various conditions ; concentration of the extraction solution, calcination temperature and calcination time. As the results, it was found that the optimum conditions of the extraction of Al and Si elements from fly ash were as follows, concentration of NaOH was 5N for both of them, calcination temperature was $700^{\circ}C$ and $600^{\circ}C$ and calcination time was 1hr and 1.5hr, respectively The extracted solution was used as a coagulant to treat the diluted metal-plating solutions which contained Pb and Cu, respectively. As the result of treatment on the diluted Pb-plating solution with 315NTU, the removal efficiency of turbidity was more than 90%, and the removal efficiency of Pb was about 80%. As for treatment of the non-turbid diluted Cu-plating solution, the removal efficiency of Cu was about 98%.

A Basic Study on the Characteristics of Traditional Garden Landscapes of Inner Mongolia

  • Jo, Hyun-Ju;Lu, Dan
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1427-1432
    • /
    • 2016
  • In order to preserve the traditional garden landscape and maintain the harmony between traditional and modern gardens of Inner Mongolia, this study theoretically examined the creation and background elements of Inner Mongolia, and reviewed the nature of the people and the traditional design elements. The results of this study show that: 1) the background factor of traditional garden landscapes was nomadic life in plains, which was a lifestyle of adapting to Mother Nature and promoting mutual existence and survival; 2) Shamanism impacted the views of nature among the ancient Inner Mongolian people; 3) traditional garden landscapes could be categorized into landscapes centered around Mother Nature during the Huns era and those centered around the symbolic landscape during the Genghis Khan era; 4) aesthetic elements of traditional garden landscapes included traditional colors of red, yellow, sky-blue, milky-white, and traditional patterns of external knot, cloud, bull horn, and plain grass. These findings may provide basic data for the creation background and characteristics of traditional garden landscape of Inner Mongolia in the application of the green space design of Inner Mongolia.

Characteristics of Metallic and Ionic Elements Concentration in PM10 at Guducsan in Busan (부산 구덕산 미세먼지의 금속성분 및 이온성분 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.715-726
    • /
    • 2016
  • This study investigates the characteristics of metallic and ionic elements concentration, concentration according to transport path, and factor analysis in $PM_{10}$ at Guducsan in Busan in the springtime of 2015. $PM_{10}$ concentration in Guducsan and Gwaebeopdong were $59.5{\pm}9.04{\mu}g/m^3$ and $87.5{\pm}20.2{\mu}g/m^3$, respectively. Contribution rate of water-soluble ions and secondary ion in $PM_{10}$ concentration in Guducsan were 37.0% and 27.8% respectively. [$NO_3{^-}/SO{_4}^{2-}$] ratio and contribution rate of sea salt of $PM_{10}$ in Guducsan and Gwaebeopdong were 0.91 and 1.12, 7.0% and 5.3%, respectively. The results of the backward trajectory analysis indicates that $PM_{10}$ concentration, total inorganic water-soluble ions and total secondary ions were high when the air parcels moved from Sandong region in China than non-Sandong and northen China to Busan area. The results of the factor analysis at Guducsan indicates that factor 1 was anthropogenic source effects such as automobile emissions and industrial combustion processes, factor 2 was marine sources such as sea salts from sea, and factor 3 was soil component sources.

Characteristics of Fine Particle and Metallic Elements at School Classroom in Summertime

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.673-679
    • /
    • 2014
  • This study aims to investigate the indoor air quality by analyzing $PM_{10}$ concentration and metallic elements collected from high school(classroom, science room, assembly room). $PM_{10}$ concentration of a classroom, a science room, and an assembly hall during the research period was 87.7 ${\mu}g/m^3$, $75.3{\mu}g/m^3$, $64.6{\mu}g/m^3$, respectively. Si of $PM_{10}$ had highest concentration with 15,427 $ng/m^3$ followed by Na which had 7,205 $ng/m^3$, and the order was Si>Na>Ca>Mg>Fe>K in the classroom. $PM_{10}$ concentration of a classroom and a science room was each 104.8 ${\mu}g/m^3$ and 75.3 ${\mu}g/m^3$ during the semester and $PM_{10}$ concentration of a classroom and an assembly hall was each 80.9 ${\mu}g/m^3$ and 64.6 ${\mu}g/m^3$ during the summer vacation. Based on $PM_{10}$ and metallic concentration at a classroom on day of week, the concentration of Friday was highest with 112.0 ${\mu}g/m^3$, and that of Monday was lowest with 65.3 ${\mu}g/m^3$.

A Study on the Elements of the Environmentally Friendly Design of the Courtyards in Elementary Schools -Focused on the Open Direction and D/H Ratio- (초등학교 중정공간에서의 친환경요소도입에 관한 연구 -중정의 열린 방위와 D/H비를 중심으로-)

  • Kim, Chan-Ju;Kim, Hak-Rae;Park, Young-Ki
    • KIEAE Journal
    • /
    • v.2 no.3
    • /
    • pp.3-10
    • /
    • 2002
  • The objectives of this research are to find the problems in the courtyards of the elementary schools and to provide the new design guidelines on the environmental design applicable to the court yard of the elementary schools. To analyze the current usage condition of the court yards of the elementary schools, sixty-three elementary schools in Seoul were investigated through the architectural drawings, and then nineteen of them were selected for the detailed investigations. The survey findings testified that the orientation of the courtyard's open direction and D/H ratio would be critically important for the architectural design of the courtyard in elementary schools. From these analyses, the following guidelines would be proposed on the courtyards for the improved elementary school design. Firstly, to increase the environmental condition of the courtyard, the orientation of the courtyard's open side would not be north. Secondly, to make the environmentally friendly courtyard, it is necessary to increase the D/H ratio. Sooner or later, the courtyard of the elementary schools would be introduced very largely. Thus, it is important to figure out the elements of the environmental design of the courtyard in elementary schools. The continuous research on the elements of the environmentally friendly design of the courtyard will provide the proper direction for the better design of the elementary schools.

Uptake of Some Toxic Elements by Wild Plants in Siwaqa Area/Central Jordan

  • Bzour, Asma Fayyad;Khoury, Hani Nicola;Oran, Sawsan Attalah
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.148-156
    • /
    • 2017
  • The wide distribution of redox-sensitive elements (RSE) as arsenic (As), cadmium (Cd), selenium (Se), and strontium (Sr) in the top soil of Siwaqa area are related to the weathering action of alkaline surface and groundwater on the parent rocks. The bioavailability, distribution, sorption, and ecotoxicity of As, Cd, Se, and Sr, of the wild plants and top soils in the study area were investigated. A total number of 23 surface soil samples and 23 plant samples were collected and analyzed for the most toxic elements. The uptake of elements by plants was dependent on the plant species and the concentration of elements in the soil. For example, Sr was the highest concentration in soil samples and plants, while Se was the lowest concentration in soil samples and pants. For the plants, the results showed that Bellevalia sp. had the highest elements uptake, while Allium rothii had the lowest elements uptake. The results of this work provide a valuable knowledge for understanding the bioavailability of some toxic elements in the soil and plants of Central Jordan. The results are expected to be of great help for the Jordanian Uranium Mining Company during their environmental risk assessments.

Two-dimensional nonconforming finite elements: A state-of-the-art

  • Choi, Chang-Koon;Kim, Sun-Hoon;Park, Young-Myung;Chung, Keun-Young
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.41-61
    • /
    • 1998
  • A state-of-the-art report on the new finite elements formulated by the addition of nonconforming displacement modes has been presented. The development of a series improved nonconforming finite elements for the analysis of plate and shell structures is described in the first part of this paper. These new plate and shell finite elements are established by the combined use of different improvement schemes such as; the addition of nonconforming modes, the reduced (or selective) integration, and the construction of the substitute shear strain fields. The improvement achieved may be attributable to the fact that the merits of these improvement techniques are merged into the formation of the new elements in a complementary manner. It is shown that the results obtained by the new elements give significantly improved solutions without any serious defects such as; the shear locking, spurious zero energy mode for the linear as well as nonlinear benchmark problems. Recent developments in the transition elements that have a variable number of mid-side nodes and can be effectively used in the adaptive mesh refinement are presented in the second part. Finally, the nonconforming transition flat shell elements with drilling degrees of freedom are also presented.

Petrochemistry and Environmental Geochemistry of Shale and Coal from the Daedong Supergroup, Chungnam Coal Field, Korea (충남탄전, 대동누층군의 셰일과 탄질암에 관한 암석화학 및 환경지구화학적 특성)

  • Lee, Chan Hee;Lee, Hyun Koo;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.417-431
    • /
    • 1997
  • Characteristics of sedimentary rocks and enrichment of toxic elements in shale and coal from the Chungnam coal field were investigated based upon geochemistry of major, trace and rare earth elements. Shale and coal of the area are interbedded along the Traissic to the Jurassic Daedong Supergroup, which can be subdivided into grey shale, black shale and coal. The coal had been mined, however all the mines are abandonded due to the economic problems. The shale and coal are characterized by relatively low contents of $SiO_2$, and $Al_2O_3$ and high levels of loss-on-ignition (LOI), CaO and $Na_2O$ in comparison with the North American Shale Composite (NASC). Light rare earth elements (La, Ce, Yb and Lu) are highly enriched with the coal. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in shale and coal range from 30.0 to 351.8 and from 4.2 to 106.8, which have partly negative correlations against $SiO_2/Al_2O_3$ (1.24 to 6.06), respectively. Those are suggested that controls of mineral compositions in shale and coal can be due to substitution and migration of those elements by diagenesis and metamorphism. Shale and coal of the area may be deposited in terrestrial basin deduced from high C/S (39 to 895) and variable composition of organic carbon (0.39 to 18.40 wt.%) and low contents of reduced sulfur (0.01 to 0.05 wt.%). These shale and coal were originated from the high grade metamorphic and/or igneous rocks, and the rare earth elements of those rocks are slightly influenced with diagenesis and metamorphism on the basis of $Al_2O_3$ versus La, La against Ce, Zr versus Yb, the ratios of La/Ce (0.38 to 0.85) and Th/U (3.6 to 14.6). Characteristics of trace and rare earth elements as Co/Th (0.07 to 0.86), La/Sc (0.31 to 11.05), Se/Th (0.28 to 1.06), V/Ni (1.14 to 3.97), Cr/V (1.4 to 28.3), Ni/Co (2.12 to 8.00) and Zr/Hf (22.6~45.1) in the shale and coal argue for inefficient mixing of the simple source lithologies during sedimentation. These rocks also show much variation in $La_N/Yb_N$ (1.36 to 21.68), Th/Yb (3.5 to 20.0) and La/Th (0.31 to 7.89), and their origin is explained by derivation from a mixture of mainly acidic igneous and metamorphic rocks. Average concentrations in the shale and coal are As=7.2 and 7.5, Ba=913 and 974, Cr=500 and 145, Cu=20 and 26, Ni=38 and 35, Pb=30 and 36, and Zn=77 and 92 ppm, respectively, which are similar to those in the NASC. Average enrichment indices for major elements in the shale (0.79) and coal (0.77) are lower than those in the NASC. In addition, average enrichment index for rare earth elements in coal (2.39) is enriched rather than the shale (1.55). On the basis of the NASC, concentrations of minor and/or environmental toxic elements in the shale and coal were depleted of all the elements examined, excepting Cr, Pb, Rb and Th. Average enrichment indices of trace and/or potentially toxic elements (As, Cr, Cu, Ni, Pb, U and Zn) are 1.23 to 1.24 for shale and 1.06 to 1.22 for coal, respectively.

  • PDF