• Title/Summary/Keyword: Environmental Degradation

Search Result 2,025, Processing Time 0.034 seconds

Synthesis of Visible-working Pt-C-TiO2 Photocatalyst for the Degradation of Dye Wastewater (염료폐수 분해를 위한 가시광 감응형 Pt-C-TiO2 광촉매의 합성)

  • Hahn, Mi Sun;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.123-128
    • /
    • 2005
  • Among various metal oxides semiconductors, $TiO_2$ is the most studied semiconductor for environmental clean-up applications due to its unique ability in photocatalyzing various organic contaminants, its chemical inertness, and nontoxicity. $TiO_2$, however, has a few drawbacks to be solved such as reactivity mainly working under ultraviolet irradiation (${\lambda}$ < 387 nm) and electron - hole recombination on $TiO_2$. In this study, to extend the absorption range of $TiO_2$ into the visible range and enhance electron - hole separation, we synthesized platinum (Pt) deposited $C-TiO_2$. The presence of Pt as an electron sink has been known to snhance the separation of photogenerated electron-hole pairs and induce the thermal decomposition. The characterization of as-synthesized $Pt-C-TiO_2$ was performed by Transmission Electron Microscopic (TEM), the Brunuer-Emmett-Teller (BET) method, X-ray Diffractometer (XRD), UV-vis spectrometer (UV-DRS), and X-ray Photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photodegradation experiment of an azo dye (Acid Red 44; $C_{10}H_7N=NC_{10}H_3(SO_3Na)_2OH$)was carried out by using an Xe arc lamp (300 W, Oriel). A 420 nm cut-off filter was used for visible light irradiation. From the results, Pt-deposited $C-TiO_2$ showed a far superior phothdegradation activity to Degussa P25, the commercial product under the irradiation of visible light and enhanced photocatalytic activity of visible-working $C-TiO_2$. This is a useful result into the application for the purification system of dye wastewater using visible energy of sun light.

  • PDF

Development and Application of the SWAT HRU Mapping Module for Estimation of Groundwater Pollutant Loads for Each HRU in the SWAT Model (SWAT HRU별 지하수 오염부하량 산정을 위한 SWAT HRU Mapping Module 개발 및 적용)

  • Ryu, Ji Chul;Mun, Yuri;Moon, Jongpil;Kim, Ik Jae;Ok, Yong Sik;Jang, Won Seok;Kang, Hyunwoo;Lim, Kyoung Jae
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.49-70
    • /
    • 2011
  • The numerous efforts have been made in understanding generation and transportation mechanism of nonpoint source pollutants from agricultural areas. Also, the water quality degradation has been exacerbated over the years in many parts of Korea as well as other countries. Nonpoint source pollutants are transported into waterbodies with direct runoff and baseflow. It has been generally thought that groundwater quality is not that severe compared with surface water quality. However its impacts on groundwater in the vicinity of stream quality is not negligible in agricultural areas. The SWAT model has been widely used in hydrology and water quality studies worldwide because of its flexibilities and accuracies. The spatial property of each HRU, which is the basic computational element, is not presented. Thus, the SWAT HRU mapping module was developed in this study and was applied to the study watershed to evaluate recharge rate and $NO_3-N$ loads in groundwater. The $NO_3-N$ loads in groundwater on agricultural fields were higher than on forests because of commercial fertilizers and manure applied in agricultural fields. The $NO_3-N$ loads were different among various crops because of differences in crop nutrient uptake, amount of fertilizer applied, soil properties in the field. As shown in this study, the SWAT HRU mapping module can be efficiently used to evaluate the pollutant contribution via baseflow in agricultural watershed.

  • PDF

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

Studies on Reaction Parameters for Composting of Paper Mill Sludge in a Small-Scale Reactor and Static Piles (제지슬럿지의 퇴비화를 위한 반응변수 연구)

  • Han, Shin Ho;Chung, Young Ryun;Cho, Cheon Hee;Kang, Moon Hee;Oh, Say Kyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.19-29
    • /
    • 1994
  • A large volume of paper mill sludge(PMS) is produced every day from paper industries after treatments of waste water and it costs too much to dispose of the sludge. Since PMS consists mostly of biodegradable organic matter, cellulose, it is desirable to recycle it by proper treatments such as composting. In this study, experiments were conducted using a small scale reactor(12l) to establish optimum conditions for efficient composting of PMS of which initial pH, C/N ratio, and moisture content were 7.1, 28~30, and 60~65%, respectively. No heavy metals such as mercury, cadmimum, and lead were not detected in the PMS. Various levels of forced aeration, 1 minute aeration per every 30, 60, 120, 240, and 480 minutes were applied and 1 minute aeration per 60 and 120 minutes found to be proper for composting of 8l PMS in this system. Relationship between $CO_2$ production and temperatures was positively correlated with r> 0.82 suggesting that the normal decomposition of PMS by microorganisms occurred. However, under the condition of aeration interval over than 240 minutes, a negative relationship between two parameters was found indicating the occurrence of abnormal(maybe anaerobic) degradation. The amount of added nitrogen also affected composting of PMS resulting in the increase of $CO_2$ production and temperature. Semi-field tests using 100kg PMS in a static pile sysem showed that PMS could be composted efficiently under optimal environmental conditions. The parameters determining efficiency of composting such as C/N ratio, aeration, moisture content, and pH need to be monitored.

  • PDF

Variations in Ammonium Removal Rate with Tidal State in the Macrotidal Han River Estuary: Potential Role of Nitrification (한강기수역에서의 암모늄 제거율 변화 및 질산화의 잠재적 역할)

  • Hyun, Jung-Ho;Chung, Kyung-Ho;Park, Yong-Chul;Choi, Joong-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In order to understand the importance of tidal action and $NH_4{^+}$ -nitrification in the removal of dissolved oxygen (DO) and $NH_4{^+}$, concentrations of DO, $NH_4{^+}$, $NO_2{^-}$ and $NO_3{^-}$ were measured with time for water samples collected at different tidal state in the eutrophic macrotidal Han River estuary. Field measurements indicated that most environmental parameters, except for the water temperature and DO concentration, were tightly controlled by the eutrophic freshwater runoff and large-scale tidal action. Dark incubation of the water sample at $25^{\circ}C$ showed that the removal rates of DO and $NH_4{^+}$ in high tide sample were 2.76 ${\mu}M\;O_2\;d^{-1}$ and 1.76 ${\mu}M\;N\;d^{-1}$ respectively, and increased to 5.66 ${\mu}M\;O_2\;d^{-1}$ and 3.36 ${\mu}M\;N\;d^{-1}$ respectively, in low tide sample. These changes indicated that microbial degradation and uptake of organic matter and inorganic nutrients were more active during low tide. $NH_4{^+}$-nitrification responsible for total DO removal in low tide (23.81%) and $NH_4{^+}$ turnover rates due to $NH_4{^+}$-nitrification in low tide (0.18 $d^{-1}$) were approximately 3.7 times and 3 times, respectively, higher than those in high tide. These results indicated that $NH_4{^+}$ -nitrifying bacteria introduced into the Han River estuary during low tide played a significant role in the removal of DO and $NH_4{^+}$. The decreasing removal rates in DO and $NH_4{^+}$ with the increasing tidal level seemed to be associated with the salinity impact on the halophobic freshwater $NH_4{^+}$-nitrifying bacteria. The results implied that anthropogenic $NH_4{^+}$ sources should be treated prior to the freshwater runoff into the estuary for the effective control of $NH_4{^+}$ in the Han River estuary. These results also suggest that parallel ecological studies on the chemoautotrophic nitrifying bacteria are essential for the elucidation of nitrogen cycles in the eutrophic Han River estuary.

  • PDF

The Social and Economic Impact of the Urban Regeneration Project in Jeonju Hanok Village Area (전주 한옥마을의 도시재생사업이 지역변화에 미친 영향)

  • Kim, Ju-Young;Heo, Sun-Young;Moon, Tae-Heon
    • Journal of the Korean association of regional geographers
    • /
    • v.23 no.1
    • /
    • pp.106-117
    • /
    • 2017
  • Recently, urban regeneration is being actively promoted in Korea and among those Jeonju Hanok Village is the major project which is the most consistently promoted. For this, visitors of Jeonju Hanok Village are skyrocketing. However, due to this condition, various problems are occurring, especially about commercialization. In this regard, this study is to suggest management of the Jeonju Hanok Village and new orientation in the policy, by analyzing physical, economic, and social status due to urban regeneration for Jeonju Hanok Village which has lost its identity and been commercialized. For this, the study analyzed changes in land usage and real transaction price, SNS data. Firstly, in the physical analysis, the study realized that there is commercialization going around the main streets of Jeonju Hanok Village. Due to the rapid commercialization, living spaces for locals are replaced to commercial spaces for tourists, and the emigration of locals is caused by economic/environmental damages with the degradation of housing environments. Secondly, in the economic analysis, there was no gap in real transactions among streets in 2010 but has shown a valid gap in 2016. The traffic of tourists is heavy and the real transaction prices of streets that are adjacent to major tourist sights rose the most. Rising real transaction prices are a positive phenomenon in the aspect of the city regeneration but it is concerned that they can be perceived as investment subjects. Thirdly, in the social analysis, tourists are using commercial aspects more than historical or cultural sites, and have lots of interest on those. However, because there are also lots of opinions about the commercialization of Hanok Village, we think the plans which can establish the identity of Hanok Village should be prepared. The study has its meaning on analyzing reality based on the land usage, real transaction, SNS data and suggesting political implications.

  • PDF

A Study on the Establishment and Application of Landscape Height Based on View and Topographical Features - Focusing on the Maximum Height Regulation District around Bukhan Mountain National Park - (조망 및 지형특성에 따른 경관고도 도출과 적용 방안 - 북한산 국립공원 인근의 최고고도지구를 중심으로 -)

  • Chang, In-Young;Shin, Ji-Hoon;Cho, Woo-Hyun;Shin, Young-Sun;Kim, Eon-Gyung;Kwon, Yoon-Ku;Im, Seung-Bin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.1
    • /
    • pp.35-45
    • /
    • 2011
  • The landscape of Seoul was dynamically changed and developed with the rapid post-war economic growth. Seoul city designated a height regulation district to preserve and manage the city landscape and protect it from haphazard construction. The designation of a maximum height regulation district has obvious purpose and simple regulations which makes the implementation and management easy to apply yet the altitude restriction lacks an objective basis for its enforcement. Many studies have been done and the current uniform height regulation requires more objective and logical guidelines. This study selected the Bukhan Mountain area, a National Park designated to protect the environment, to present a new landscape height guideline to minimize environmental degradation and to harmonize the artificial and natural landscapes of the area. Document research was done to identify the regulation types(absolute height regulation, view line regulation, oblique line restriction regulation) and principles for height regulation district establishment, acknowledge the current status and issues of the Bukhan Mountain area's maximum height regulation district. Gangbuk-Gu was chosen as the site and survey was conducted on outstanding view points and view corridors of residents. From document research, an appropriate landscape height guideline was selected and applied to Gangbuk-Gu. According to the guideline, suitable heights for buildings were suggested. These were then applied to three-dimensional simulations and a final guideline was suggested.

Debris flow characteristics and sabo dam function in urban steep slopes (도심지 급경사지에서 토석류 범람 특성 및 사방댐 기능)

  • Kim, Yeonjoong;Kim, Taewoo;Kim, Dongkyum;Yoon, Jongsung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.627-636
    • /
    • 2020
  • Debris flow disasters primarily occur in mountainous terrains far from cities. As such, they have been underestimated to cause relatively less damage compared with other natural disasters. However, owing to urbanization, several residential areas and major facilities have been built in mountainous regions, and the frequency of debris flow disasters is steadily increasing owing to the increase in rainfall with environmental and climate changes. Thus, the risk of debris flow is on the rise. However, only a few studies have explored the characteristics of flooding and reduction measures for debris flow in areas designated as steep slopes. In this regard, it is necessary to conduct research on securing independent disaster prevention technology, suitable for the environment in South Korea and reflective of the topographical characteristics thereof, and update and improve disaster prevention information. Accordingly, this study aimed to calculate the amount of debris flow, depending on disaster prevention performance targets for regions designated as steep slopes in South Korea, and develop an independent model to not only evaluate the impact of debris flow but also identify debris barriers that are optimal for mitigating damage. To validate the reliability of the two-dimensional debris flow model developed for the evaluation of debris barriers, the model's performance was compared with that of the hydraulic model. Furthermore, a 2-D debris model was constructed in consideration of the regional characteristics around the steep slopes to analyze the flow characteristics of the debris that directly reaches the damaged area. The flow characteristics of the debris delivered downstream were further analyzed, depending on the specifications (height) and installation locations of the debris barriers employed to reduce the damage. The experimental results showed that the reliability of the developed model is satisfactory; further, this study confirmed significant performance degradation of debris barriers in areas where the barriers were installed at a slope of 20° or more, which is the slope at which debris flows occur.

Soil Management Techniques for High Quality Cucumber Cultivation in Plastic Film Greenhouse (고품질 시설하우스 오이재배를 위한 토양 종합관리 기술)

  • Hyun, Byung-Keun;Jung, Sug-Jae;Jung, Yeon-Jae;Lee, Ju-Young;Lee, Jae-Kook;Jang, Byoung-Choon;Chio, Nag-Doo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.717-721
    • /
    • 2011
  • In case of plastic film greenhouses cultivating fresh vegetables on paddy soil, soil characteristics must be considered as more important factor than any other factors. Generally after the four years of cultivation, soils tend to increase electrical conductivity value, nutrient unbalance and soil pests. As a result, degradation of agricultural products occurred, therefore it is necessary to improve soil conditions. In this study, yield and economic cost of cucumber were analyzed. The best soil conditions for cucumber cultivation were alluvial or valley in soil topology, moderately or poorly drainage in soil drainage classes, coarse loamy soil in texture. In addition, rich-sunlight and-deep groundwater would be proper for the cucumber cultivation. Good environmental managements of plastic film greenhouse were as follows. The temperature needed to be adjusted three times. The optimal daytime temperature could be $22{\sim}28^{\circ}C$, the one from 12 until night could be $14{\sim}15^{\circ}C$, and the temperature from 24 to sunrise could be $10{\sim}12^{\circ}C$. During plant growth period, soil moisture content was as low as 10~15%, and it needed to be maintained as 15~20% during reproductive growth period. To control pests, catch crop cultivation and solar treatment were carried out, after those EC was reduced and the root-knot nematode was controled too. Cucumber yield from the plot with improved soil managements increased to $158.4Mg\;ha^{-1}$, but plot with successive cropping injury yielded $140.3Mg\;ha^{-1}$. The income from the plot with improved soil managements was 215,676 thousand won $ha^{-1}$, the plot with successive cropping injury was 131,649 thousand won $ha^{-1}$. Income rate of each plot was 51.8% and 38.4%, respectively.

Christian Sabbath and Christian Education in the Era of 'Life Crisis' ('생명 위기'의 시대, 기독교의 안식, 그리고 기독교교육)

  • Ryu, Sam Jun
    • Journal of Christian Education in Korea
    • /
    • v.67
    • /
    • pp.339-375
    • /
    • 2021
  • The author considers that contemporary society has entered the era of 'life on earth in peril' as a very serious situation in comparison with the past, and assumes that this life-in-peril situation, known as 'life crisis,' is one of the most urgent and important issues in Christian education as well as in public education. This urgency and importance is mainly based on the belief that Christianity is the religion of life that values all living beings' life and all Christians have the sacred vocation to cope with this crisis of life on earth, given by the life-giving God. For this reason, this study aims at identifying some tasks that Christian education should perform in the era of imperiled life, premising that diverse life-threatening situations and circumstances in today's world are closely related to the Christian Sabbath. More specifically, first of all, this article analyzes some notable phenomena of the life crisis in the contemporary world, such as deaths from intentional self-harm (suicides), deaths from industrial accidents and disasters, the real-life situation of vulnerable populations, people's indifference and insensitivity to the situation, and natural environmental degradation, by reflecting on current global issues as well as issues in Korea. This paper also criticizes neoliberalism, productivism, consumerism, economic materialism, egotism, and anthropocentrism as ideologies for causing these phenomena. After the criticism, the author interprets, from biblical and theological perspectives on the Christian Sabbath, main purposes and meanings of the Sabbath for contemporary society that are deeply connected with the crisis of life on earth: confessing that God takes the initiative to govern every creature's living and being; building the relationship with the God who has given the power of life to all living beings; practicing the Sabbath rest by living a holy life; and participating in the Sabbath rest as 'life-giving ministry.' In conclusion, this article suggests Christian educational practices that confront the life crisis, rooted in the purposes and meanings of the Christian Sabbath: reminding participants of the belief that God is the source of life on earth; cultivating 'life literacy'; helping people to resist the crisis of life; and encouraging humans to pursue the well-being and peace of both humanity and the earth.