• Title/Summary/Keyword: Environmental Control System

Search Result 2,940, Processing Time 0.038 seconds

Development of A Material Flow Model for Predicting Nano-TiO2 Particles Removal Efficiency in a WWTP (하수처리장 내 나노 TiO2 입자 제거효율 예측을 위한 물질흐름모델 개발)

  • Ban, Min Jeong;Lee, Dong Hoon;Shin, Sangwook;Lee, Byung-Tae;Hwang, Yu Sik;Kim, Keugtae;Kang, Joo-Hyon
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • A wastewater treatment plant (WWTP) is a major gateway for the engineered nano-particles (ENPs) entering the water bodies. However existing studies have reported that many WWTPs exceed the No Observed Effective Concentration (NOEC) for ENPs in the effluent and thus they need to be designed or operated to more effectively control ENPs. Understanding and predicting ENPs behaviors in the unit and \the whole process of a WWTP should be the key first step to develop strategies for controlling ENPs using a WWTP. This study aims to provide a modeling tool for predicting behaviors and removal efficiencies of ENPs in a WWTP associated with process characteristics and major operating conditions. In the developed model, four unit processes for water treatment (primary clarifier, bioreactor, secondary clarifier, and tertiary treatment unit) were considered. Additionally the model simulates the sludge treatment system as a single process that integrates multiple unit processes including thickeners, digesters, and dewatering units. The simulated ENP was nano-sized TiO2, (nano-TiO2) assuming that its behavior in a WWTP is dominated by the attachment with suspendid solids (SS), while dissolution and transformation are insignificant. The attachment mechanism of nano-TiO2 to SS was incorporated into the model equations using the apparent solid-liquid partition coefficient (Kd) under the equilibrium assumption between solid and liquid phase, and a steady state condition of nano-TiO2 was assumed. Furthermore, an MS Excel-based user interface was developed to provide user-friendly environment for the nano-TiO2 removal efficiency calculations. Using the developed model, a preliminary simulation was conducted to examine how the solid retention time (SRT), a major operating variable affects the removal efficiency of nano-TiO2 particles in a WWTP.

Evaluation of SATEEC Daily R Module using Daily Rainfall (일강우를 고려한 SATEEC R 모듈 적용성 평가)

  • Woo, Wonhee;Moon, Jongpil;Kim, Nam Won;Choi, Jaewan;Kim, Ki-sung;Park, Youn Shik;Jang, Won Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.841-849
    • /
    • 2010
  • Soil erosion is an natural phenomenon. However accelerated soil erosion has caused many environmental problems. To reduce soil loss from a watershed, many management practices have been proposed worldwide. To develop proper and efficient soil erosion best management practices, soil erosion rates should be estimated spatially and temporarily. The Universal Soil Loss Equation (USLE) and USLE-based soil erosion and sediment modelling systems have been developed and tested in many countries. The Sediment Assessment Tool for Effective Erosion Control (SATEEC) system has been developed and enhanced to provide ease-of-use interface to the USLE users. However many researchers and decision makers have requested to enhance the SATEEC system for simulation of soil erosion and sediment reflecting effects of single storm event. Thus, the SATEEC R factors were estimated based on 5 day antecedent rainfall data. The SATEEC 2.1 daily R factor was applied to the study watershed and it was found that the R2 and EI values (0.776 and 0.776 for calibration and 0.927 and 0.911 for validation) with the daily R were greater than those (0.721 and 0.720 for calibration and 0.906 and 0.881 for validation) with monthly R, which was available in the SATEEC 2.0 system. As shown in this study, the SATEEC with daily R can be used to estimate soil erosion and sediment yield at a watershed scale with higher accuracy. Thus the SATEEC with daily R can be efficiently used to develop site-specific soil erosion best management practices based on spatial and temporal analysis of soil erosion and sediment yield at a daily-time step, which was not possible with USLE-based soil erosion modeling system.

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

The Effect of Environment-friendly Certifications on Agricultural Producer Organizations (친환경·GAP·HACCP이 농업 생산자조직에 미치는 영향)

  • Kim, Chang-Hwan;Park, Seong-Ho
    • Journal of Distribution Science
    • /
    • v.13 no.6
    • /
    • pp.97-104
    • /
    • 2015
  • Purpose - The distribution of agricultural products is changing due to recent shifts in environmental free trade. Specifically, the competitiveness of domestic agricultural products has weakened as a result of the Korea-China Financial Trade Agreement. Agricultural producers are faced with increasing difficulties and organized production centers are growing in importance daily. To overcome this crisis, agricultural producer organizations are vying for environment-friendly agricultural certifications, Good Agriculture Practices (GAP) and Hazard Analysis and Critical Control Point (HACCP). In particular, as consumer demand for higher safety grows, farmers are increasing their certification rates. Therefore, this certification system is expected to help strengthen the competitiveness of agricultural producer organizations. Research design/data/methodology - Organized production centers are classified by certification. A survey was conducted with 91 organizations using factor analysis and logistic regression analysis for the examination. The factor analysis results are as follows. Raw material procurement, education·specialization, marketing, joint business, organizing ability, business management, effectiveness, certification, and larger organizations were classified as the nine types of factors. These factors affect the organized production centers and are used in the logistic regression analysis. The purpose of such research and analysis is to suggest a direction for future production center policies. Results - The basic statistical results are as follows: analysis of the producer organizations of 91 sites, average number of members per site of 1,624, and average sales of 25,961 million won. Additionally, the average income per farmer is 175 million won, and the pooling system rate is 53.5%. The factor analysis results are as follows. Factor 1 consists of contract cultivation, ongoing shipment, selection subdivision, traceability, and major retailer management. Factor 2 consists of manual cultivation, specialty selection, education program, and R&D. Factor 3 consists of advertising, various dealers, various sales strategies, and a unified sales counter. Factor 4 consists of agricultural materials co-purchase, policy support, co-shipment, and incentives. Factor 5 consists of the co-selection and pooling system. Factor 6 consists of co-branding and operating by the organization's article. Factor 7 consists of the buy-sell ratio and rate of operation of the agriculture promotion center. Factor 8 consists of bargaining power in volume and participation rate of farmer certification. Factor 9 consists of increasing new subscribers. The logistic regression analysis results are as follows. Considering the results by type of certification, the environment-friendly agricultural certification type and the GAP certification type have a (+) influence. GAP and HACCP certification types affecting the education·specialization factor have a (+) influence. Considering the results for each type of certification, the environment-friendly agricultural certification types on the effectiveness factor have (-) influence; the HACCP certification types on the organizing ability and effectiveness factor have a (-) influence. Conclusions - Agricultural producer organizations should develop plans as follows: The organizations need to secure education for agricultural production; increase the pooling system ratio for sustainable organizational development; and, finally, expand the number of agricultural producer organizations.

Safety Analysis of Storm Sewer Using Probability of Failure and Multiple Failure Mode (파괴확률과 다중파괴유형을 이용한 우수관의 안전성 분석)

  • Kwon, Hyuk-Jae;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.967-976
    • /
    • 2010
  • AFDA (Approximate Full Distribution Approach) model of FORM (First-Order Reliability Model) which can quantitatively calculate the probability that storm sewer reach to performance limit state was developed in this study. It was defined as a failure if amount of inflow exceed the capacity of storm sewer. Manning's equation and rational equation were used to determine the capacity and inflow of reliability function. Furthermore, statistical characteristics and distribution for the random variables were analyzed as a reliability analysis. It was found that the statistical distribution for annual maximum rainfall intensity of 10 cities in Korea is matched well with Gumbel distribution. Reliability model developed in this study was applied to Y shaped storm sewer system to calculate the probability that storm sewer may exceed the performance limit state. Probability of failure according to diameter was calculated using Manning's equation. Especially, probability of failure of storm sewer in Mungyeong and Daejeon was calculated using rainfall intensity of 50-year return period. It was found that probability of failure can be significantly increased if diameter is decreased below the original diameter. Therefore, cleaning the debris in sewer pipes to maintain the original pipe diameter should be one of the best ways to reduce the probability of failure of storm sewer. In sewer system, two sewer pipes can flow into one sewer pipe. For this case, probability of system failure was calculated using multiple failure mode. Reliability model developed in this study can be applied to design, maintenance, management, and control of storm sewer system.

Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm (적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템)

  • Jin, Moon Yong;Park, Jong Bin;Lee, Dong Suk;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.361-368
    • /
    • 2014
  • The LPR(License plate recognition) system has been developed to efficient control for complex traffic environment and currently be used in many places. However, because of light, noise, background changes, environmental changes, damaged plate, it only works limited environment, so it is difficult to use in real-time. This paper presents a heuristic segmentation algorithm for robust to noise and illumination changes and introduce a real-time license plate recognition system using it. In first step, We detect the plate utilized Haar-like feature and Adaboost. This method is possible to rapid detection used integral image and cascade structure. Second step, we determine the type of license plate with adaptive histogram equalization, bilateral filtering for denoise and segment accurate character based on adaptive threshold, pixel projection and associated with the prior knowledge. The last step is character recognition that used histogram of oriented gradients (HOG) and multi-layer perceptron(MLP) for number recognition and support vector machine(SVM) for number and Korean character classifier respectively. The experimental results show license plate detection rate of 94.29%, license plate false alarm rate of 2.94%. In character segmentation method, character hit rate is 97.23% and character false alarm rate is 1.37%. And in character recognition, the average character recognition rate is 98.38%. Total average running time in our proposed method is 140ms. It is possible to be real-time system with efficiency and robustness.

Design and Development of Multiple Input Device and Multiscale Interaction for GOCI Observation Satellite Imagery on the Tiled Display (타일드 디스플레이에서의 천리안 해양관측 위성영상을 위한 다중 입력 장치 및 멀티 스케일 인터랙션 설계 및 구현)

  • Park, Chan-Sol;Lee, Kwan-Ju;Kim, Nak-Hoon;Lee, Sang-Ho;Seo, Ki-Young;Park, Kyoung Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.541-550
    • /
    • 2014
  • This paper describes a multi-scale user interaction based tiled display visualization system using multiple input devices for monitoring and analyzing Geostationary Ocean Color Imager (GOCI) observation satellite imagery. This system provides multi-touch screen, Kinect motion sensing, and moblie interface for multiple users to control the satellite imagery either in front of the tiled display screen or far away from a distance to view marine environmental or climate changes around Korean peninsular more effectively. Due to a large amount of memory required for loading high-resolution GOCI satellite images, we employed the multi-level image load technique where the image was divided into small tiled images in order to reduce the load on the system and to be operated smoothly by user manipulation. This system performs the abstraction of common input information from multi-user Kinect motion and gestures, multi-touch points and mobile interaction information to enable a variety of user interactions for any tiled display application. In addition, the unit of time corresponding to the selected date of the satellite images are sequentially displayed on the screen and multiple users can zoom-in/out, move the imagery and select buttons to trigger functions.

Implementation of Aerial Application System for Application Uniformity (균일 방제를 위한 항공 살포시스템 구현)

  • Jee, Sun-Ho;Jeon, Bu-Il;Cho, Hyun-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.597-604
    • /
    • 2016
  • The aim of this study was to prevent the decrease in crop output by disease and insect pests and excessive spraying of agricultural pesticides by application uniformity. A 3m height and 15km/h speed is difficult to maintain with an unmanned helicopter for aerial application, which has been affected by the controlling habits and methods or environmental factors, such as changes in the wind. Therefore, in this study, an aerial application system was design to be attached to an unmanned helicopter, which can allow a controlled application width and spray rate automatically and verified experimentally using Rmax of MS-AVIATION. The size of agricultural land was 50 m2 and nine water sensitive cards were arranged at 1.25m intervals in 5 rows with each row having a 10m interval from the position of 5m. The unmanned helicopter was flying at speeds ranging from 7.2km/h to 17.6km/h and heights ranging from 2.32m to 3.47m. The proposed aerial application system allowed application uniformity by making a valid spraying area of 7.5 m2 with 46423 particles distributed on average.

Epidemiologic Studies of Reproductive Health in Male Workers (남성 근로자의 생식보건 역학연구)

  • Choi, Byeong Ju;Lee, Sanggil;Kim, Seonggyu;Sung, Jungmin;Ye, Shinhee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.3
    • /
    • pp.202-212
    • /
    • 2021
  • Objectives: The reproductive health of female workers has been extensively investigated in South Korea and other countries worldwide. However, few studies have discussed the reproductive health of male workers. In this study, we reviewed the recent literature that reports on the effects of occupational exposure on the reproductive health of male workers and the health of their children. Methods: In May 2020 we used the PubMed search engine to search the literature over the last 10 years and chose case-control, cohort, and cross-sectional studies and reviews. We selected epidemiological studies that investigated the association between pre-pregnant occupational exposure and the reproductive health of male workers and the health of their children. We excluded case reports, non-epidemiological studies (animal experiments, cellular-level experiments, and similar articles), and studies that described postnatal occupational exposure. Results: We eventually selected 23 studies. The studies that included exclusively male workers reported that those employed in the agricultural sector or those exposed to pesticides showed lower blood levels of reproductive hormones and a high risk of lympho-hematopoietic system cancer in their children. Male workers exposed to complex organic solvents and organic compounds showed a high risk of poor semen quality, increased time to pregnancy, decreased blood levels of reproductive hormones, and a high risk of lympho-hematopoietic system cancer in their children. Male workers employed in occupations that involved significant social contact, or in the leather and livestock industries, and in occupations with high levels of exposure to lead and organic solvents showed a high risk of malignancies, including lympho-hematopoietic system cancer, neuroblastoma, and central nervous system tumors in their children. Studies that investigated both male and female workers reported that children of male smelters showed a high risk of premature birth, and children of male workers exposed to metals showed a high risk of hypospadias and cryptorchidism. Children of male welders and workers employed in the glass, ceramic, and tile industries showed a high risk of premature birth. Conclusion: The findings of this study will serve as basic data for further research on male workers' reproductive health and provide a scientific basis for the development of strategies to protect the reproductive health of males employed in high-risk occupations. Moreover, the results of this study may provide guidelines to improve the understanding of and knowledge on male workers' reproductive health.

The Economics Value of Electric Vehicle Demand Resource under the Energy Transition Plan (에너지전환 정책하에 전기차 수요자원의 경제적 가치 분석: 9차 전력수급계획 중심으로)

  • Jeon, Wooyoung;Cho, Sangmin;Cho, Ilhyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.2
    • /
    • pp.237-268
    • /
    • 2021
  • As variable renewable sources rapidly increase due to the Energy Transition plan, integration cost of renewable sources to the power system is rising sharply. The increase in variable renewable energy reduces the capacity factor of existing traditional power capacity, and this undermines the efficiency of the overall power supply, and demand resources are drawing attention as a solution. In this study, we analyzed how much electric vehicle demand resouces, which has great potential among other demand resources, can reduce power supply costs if it is used as a flexible resource for renewable generation. As a methodology, a stochastic form of power system optimization model that can effectively reflect the volatile characteristics of renewable generation is used to analyze the cost induced by renewable energy and the benefits offered by electric vehicle demand resources. The result shows that virtual power plant-based direct control method has higher benefits than the time-of-use tariff, and the higher the proportion of renewable energy is in the power system, the higher the benefits of electric vehicle demand resources are. The net benefit after considering commission fee for aggregators and battery wear-and-tear costs was estimated as 67% to 85% of monthly average fuel cost under virtual power plant with V2G capability, and this shows that a sufficient incentive for market participation can be offered when a rate system is applied in which these net benefits of demand resources are effectively distributed to consumers.