• Title/Summary/Keyword: Environmental Composition

Search Result 2,919, Processing Time 0.027 seconds

The Habitat Influences the Composition of Minerals and Amino Acids in Allium victorialis var. platyphyllum (Wild Garlic)

  • Yang, Jae-Kyung;Kim, Ji-Su;Jung, Ji-Young;Jeong, Mi-Jin;Song, Hyun-Jin;Yun, Chung-Weon;Do, Eun-Su;Chang, Jun-Pok;Karigar, Chandrakant S.;Choi, Myung-Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.762-769
    • /
    • 2010
  • The composition of minerals and amino acids in Allium victorialis var. platyphyllum tissues collected from different habitats in Ulleung Island and Mt. Hambeak of the Korean Peninsula is investigated. The mineral composition of A. victorialis stem was high compared to that of bulb in all population samples. The most abundant mineral found in all the samples was potassium (K). The mineral composition was variable in garlic population of Ulleung Island in a habitat dependent manner. The A. victorialis stems and bulbs showed significant differences in their amino acid compositions according to varying habitats of Ulleung Island and Mt. Hambeak. Among the amino acids the most abundant amino acid in A. victorialis bulb tissue was arginine, followed by leucine and valine. The amino acids leucine, valine, and phenylalanine were abundant in stem tissues. The total amino acids of the A. victorialis stem tissue from Teawha pass peak sample (837 mg/100 g dry wt) were higher than the mean of other population samples (355-824 mg/100 g dry wt). However, content of amino acids in the bulb was high in A. victorialis from Nari basin (1,919 mg/100 g dry wt).

Vertical and longitudinal variations in plant communities of drawdown zone of a monsoonal riverine reservoir in South Korea

  • Cho, Hyunsuk;Marrs, Rob H.;Alday, Josu G.;Cho, Kang-Hyun
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.271-281
    • /
    • 2019
  • Background: The plant communities within reservoir drawdown zones are ecologically important as they provide a range of ecosystem services such as stabilizing the shoreline, improving water quality, enhancing biodiversity, and mitigating climate change. The aim of the study was therefore to identify the major environmental factors affecting these plant communities within the drawdown zone of the Soyangho Reservoir in South Korea, which experiences a monsoonal climate, and thereafter to (1) elucidate the plant species responses and (2) compare the soil seedbank composition along main environmental gradients. Results: Two main environmental gradients affecting the plant community structure were identified within the drawdown zone; these were a vertical and longitudinal gradient. On the vertical dimension, a hydrological gradient of flood/exposure, the annual-dominated plant community near the water edge changed to a perennial-dominated community at the highest elevation. On the longitudinal dimension from the dam to the upstream, plant species composition changed from an upland forest-edge community to a lowland riverine community, and this was correlated with slope degree, soil particle size, and soil moisture content. Simultaneously, the composition of the soil seedbank was separated along the vertical gradient of the drawdown zone, with mainly annuals near the water edge and some perennials at higher elevations. The species composition similarity between the seedbank and extant vegetation was greater in the annual communities at low elevation than in the perennial communities at higher elevation. Conclusions: The structures of plant community and soil seedbank in the drawdown zone of a monsoonal riverine reservoir were changed first along the vertical and secondly along the longitudinal gradients. The soil seedbank could play an important role on the vegetation regeneration after the disturbances of flood/exposure in the drawdown zone. These results indicate that it is important to understand the vertical and longitudinal environmental gradients affecting shoreline plant community structure and the role of soil seedbanks on the rapid vegetation regeneration for conserving and restoring the drawdown zone of a monsoonal reservoir.

Seasonal and Regional Effects on Milk Composition of Dairy Cows in South Korea

  • Nam, Ki-Taeg;Kim, Ki-Hyun;Nam, In-Sik;Abanto, Oliver D.;Hwang, Seong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.537-542
    • /
    • 2009
  • For a period of over 6 years, more than 160,000 milk samples were collected and analyzed to determine the influence of different seasonal temperatures and geographic regional location on milk composition in South Korea. Fat, protein, lactose, non fat milk solids (NFMS) and total solids (TS) contents were significantly higher among dairy cows milked in winter season than other seasons (p<0.05). In contrast, freezing point (FP), milk urea nitrogen (MUN) and somatic cell count (SCC) were significantly higher in summer season than other seasons (p<0.05). The average SCC in the autumn season was $358{\times}10^3$/ml, which was lower than any other seasons (p<0.05). These results may be due to the changes in temperature during different seasons. Meanwhile, milk produced by dairy cows in central region had higher fat, protein, lactose, NFMS, TS and MUN and had lower SCC compared to other regions (p<0.05). Fat, TS, FP, MUN and citric acid in northeast region were lower than other regions (p<0.05). The SCC was significantly higher in southeast region than those of other regions (p<0.05). As a result, it might be possible that the differences in feeding management in each different region may affect the milk composition. In conclusion, present results indicated that milk composition is clearly influenced by both season and regional location. Therefore, based on these results, development of different feeding systems, according to season and region is needed to produce high quality and satiable milk production.

Effects of Adding Oyster Shell Powder to Hanwoo Manure on its Quality and Microbial Composition - A Lab Study - (한우분에 굴 패각분말을 첨가 시 분의 특성과 미생물에 미치는 영향 -실험실 연구를 중심으로-)

  • Chang, Hong Hee;Joo, Young-Ho;Seo, Myeong-Ji;Kim, Ji-Yoon;Lee, Seong-Shin;Choi, Jeong-Seok;Jeong, Seung-Min;Noh, Hyeon-Tak;Kim, Sam-Churl
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.703-708
    • /
    • 2021
  • To improve the environmental management and resources, in this study, we aimed to investigate the effect of adding oyster shell powder to Hanwoo manure on its characteristics and microbial composition during the storage period. Additives were deposited on top of the manure surface at the rate of 0, 0.5, and 1% of oyster shell powder per 200 g of Hanwoo manure in a plastic container with three replicates; however, untreated manure litter served as the control. Manure characteristics (dry matter, organic matter and crude ash) and microbial composition (lactic acid bacteria, yeast, Bacillus subtilis, Salmonella, and E.coli) were evaluated at day 0, 2, 4, and 8. Manure characteristics exhibited an effect on dry matter, organic matter, and crude ash at day 2 and 8 (p<0.05), and not for day 0 and 4 (p>0.05). With the exception of yeast content at day 4 of storage, lactic acid bacteria, yeast, Bacillus subtilis, Salmonella, and E.coli exhibited no significant differences in all conditions during the storage period. Conclusively, addition of 1% oyster shell powder to Hanwoo manure resulted in slightly better manure characteristics; however, its microbial composition remained unchanged.

Application of X-ray Computer Tomography (CT) in Cattle Production

  • Hollo, G.;Szucs, E.;Tozser, J.;Hollo, I.;Repa, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1901-1908
    • /
    • 2007
  • The aim of this series of experiments was to examine the opportunity for application of X-ray computer tomography (CT) in cattle production. Firstly, tissue composition of M. longissimus dorsi (LD) cuts between the $11-13^{th}$ ribs (in Exp 1. between the $9-11^{th}$ ribs), was determined by CT and correlated with tissue composition of intact half carcasses prior to dissection and tissue separation. Altogether, 207 animals of different breeds and genders were used in the study. In Exp. 2 and 3, samples were taken from LD cuts, dissected and chemical composition of muscle homogenates was analysed by conventional procedures. Correlation coefficients were calculated among slaughter records, tissues in whole carcasses and tissue composition of rib samples. Results indicated that tissue composition of rib samples determined by CT closely correlated with tissue composition results by dissection of whole carcasses. The findings revealed that figures obtained by CT correlate well with the dissection results of entire carcasses (meat, bone, fat). Close three-way coefficients of correlation (r = 0.80-0.97) were calculated among rib eye area, volume of cut, pixel-sum of adipose tissue determined by CT and intramuscular fat or adipose tissue in entire carcasses. Estimation of tissue composition of carcasses using equations including only CT-data as independent variables proved to be less reliable in prediction of lean meat and bone in carcass ($R^2 = 0.51-0.86$) than for fat (($R^2 = 0.83-0.89$). However, when cold half carcass weight was also included in the equation, the coefficient of determination exceeded $R^2 = 0.90$. In Exp. 3 tissue composition of rib samples by CT were compared to the results of EUROP carcass classification. Findings revealed that CT analysis has higher predictive value in estimation of actual tissue composition of cattle carcasses than EUROP carcass classification.

Biodiesel Production from Waste Cooking Oil Using Alkali Catalyst and Immobilized Enzyme 1. Fatty Acid Composition (알칼리 촉매와 고정화 효소를 이용한 폐식용유로 부터 바이오 디젤 생산 1. 지방산 조성)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1247-1256
    • /
    • 2010
  • Since biodiesel as bioenergy is defined as ester compounds formed by esterification of animal/vegetable oils, in this study three vegetable cooking oils (market, waste and refined waste ones) were esterified by reactions of alkali catalyst and immobilized enzyme. The fatty acid composition of the formed ester compounds was analyzed to investigate the feasibility of biodiesel production. By lipolysis (i.e, hydrolysis of Triglyceride (TG)), all three vegetable oils used in this study were found to produce Diglyceride (DG), Monoglyceride (MD) and Fatty acid ethylester (FAEE). However, the amount of produced FAEE (which can be used as an energy source) was in the increasing order of market cooking oil, waste one and refined waste one. With NaOH catalyst, FAEE was produced about 24.92, 17.63 and 11.31 % for the respective oils while adding Lipozyme TL produced FAEE about 43.54, 38.16 and 24.47 %, respectively. This indicates that enzyme catalyst is more effective than alkali one for transesterification. In addition, it was found that the composition of fatty acids produced by hydrolysis of TG was unchanged with alkali and immobilized enzyme reactions. Thus it can be expected that stable conditions remain in the course of mixing with gasoline whose composition is similar to that of the fatty acids.

IBA Treatment of Poplar Cuttings and Soil Composition Amendment for Improved Adaptability and Survival

  • Cho, Wonwoo;Chandra, Romika;Lee, Wi-young;Kang, Hoduck
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.4
    • /
    • pp.259-266
    • /
    • 2020
  • Poplar trees from the Salicaceae family over the years have been utilized for various reasons which include prevention of deforestation as well as phytoremediation. This study aims to determine the optimal pre-treatment and soil conditions required for propagation of poplar cuttings for increased initial adaptability and survival rate. Five poplar clones (Hanan, 110, 107, DN-34, 52-225) were selected for IBA, soil composition treatments on propagation. IBA pre-treatment of cuttings were utilized 0, 10, and 100 mg l-1 concentrations. Soil compositions were amended with TKS-2+perlite 2:1 (v:v) and sandy clay loam mixed with artificial soil. According to the greenhouse results 10 mg l-1 of IBA showed a significant increase in plant height whereas 100 mg l-1 inhibited plant growth except in clone 110. Soil composition severely affected root growth and hence overall growth of the clones. Sandy clay loam soil had poor to stunted growth compared to TKS-2+perlite.

Exhaust VOCs Emission Characteristics from Motor Vehicles (자동차의 배기관 VOCs 배출 특성)

  • Lyu, Young-Sook;Ryu, Jung-Ho;Han, Jong-Soo;Kim, Sun-Moon;Lim, Cheol-Soo;Kim, Dae-Wook;Lee, Dong-Min;Lee, Joong-Koo;Eom, Myung-Do;Kim, Jong-Choon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2008
  • Since mobile source is a major source of VOCs, quantifying emissions from motor vehicles is an important factor to control VOCs in atmosphere. In this study, in order to evaluate tailpipe VOCs emissions from motor vehicles, mass emissions of non-methane volatile organic compounds from 45 vehicles were determined. Measurements were made on a chassis dynamometer using CVS-75 mode and speed specific drive modes. Target VOCs are 53 compounds determined as the volatile ozone precursors. The individual VOCs composition of vehicle emission and emission rates were also determined. In case of gasoline vehicles, VOCs emission from over 80,000 km vehicles were about 46% larger than less 80,000 km vehicles. The difference in benzene and toluene according to driving mileage was 44% and 26% respectively. The composition of VOCs were different by fuel type. The order of VOCs composition was paraffins>aromatics>olefins in gasoline vehicle emissions, paraffins>olefins>aromatics in light duty diesel vehicle emissions. The VOCs emissions were decreased as vehicle speed increasing. These results will be used to calculate total VOCs emissions from automobiles in the future.

Comparison of Chemical Composition of Particulate Matter Emitted from a Gasoline Direct Injected (GDI) Vehicle and a Port Fuel Injected (PFI) Vehicle using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS)

  • Lee, Jong Tae;Son, Jihwan;Kim, Jounghwa;Choi, Yongjoo;Yoo, Heung-Min;Kim, Ki Joon;Kim, Jeong Soo;Park, Sung Wook;Park, Gyutae;Park, Taehyun;Kang, Seokwon;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • Particulate matter (PM) in the atmosphere has wide-ranging health, environmental, and climate effects, many of which are attributed to fine-mode secondary organic aerosols. PM concentrations are significantly enhanced by primary particle emissions from traffic sources. Recently, in order to reduce $CO_2$ and increase fuel economy, gasoline direct injected (GDI) engine technology is increasingly used in vehicle manufactures. The popularization of GDI technique has resulted in increasing of concerns on environmental protection. In order to better understand variations in chemical composition of particulate matter from emissions of GDI vehicle versus a port fuel injected (PFI) vehicle, a high time resolution chemical composition of PM emissions from GDI and PFI vehicles was measured at facility of Transport Pollution Research Center (TPRC), National Institute of Environmental Research (NIER), Korea. Continuous measurements of inorganic and organic species in PM were conducted using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The HR-ToF-AMS provides insight into non-refractory PM composition, including concentrations of nitrate, sulfate, hydrocarbon-like and oxygenated organic aerosol, and organic mass with 20 sec time resolution. Many cases of PM emissions during the study were dominated by organic and nitrate aerosol. An overview of observed PM characteristics will be provided along with an analysis of comparison of GDI vehicle versus PFI vehicle in PM emission rates and oxidation states.