• 제목/요약/키워드: Environmental Characteristics of the Press

검색결과 408건 처리시간 0.026초

Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading

  • Zhou, Yundong;Li, Mingdong;Wen, Kejun;Tong, Ruiming
    • Geomechanics and Engineering
    • /
    • 제17권6호
    • /
    • pp.507-513
    • /
    • 2019
  • Reinforced soil and Expanded Polystyrenes (EPS) mixture (RSEM) is a geomaterial which has many merits, such as light weight, wide strength range, easy for construction, and economic feasibility. It has been widely applied to improve soft ground, solve bridge head jump, fill cavity in pipeline and widen highway. Reutilizing dredged sediment to produce RSEM as earthfill can not only consume a large amount of waste sediment but also significantly reduce the construction cost. Therefore, there is an urgent need understand the basic stress-strain characteristics of reinforced dredged sediment-EPS mixture (RDSEM). A series of cyclic triaxial tests were then carried out on the RDSEM and control clay. The effects of cement content, EPS beads content and confining pressure on the cyclic stress-strain behaviour of RDSEM were analyzed. It is found that the three stages of dynamic stress-strain relationship of ordinary soil, vibration compaction stage, vibration shear stage and vibration failure stage are also applicative for RDSEM. The cyclic stress-strain curves of RDSEM are lower than that of control clay in the vibration compaction stage because of its high moisture content. The slopes of backbone curves of RDSEMs in the vibration shear stage are larger than that of control clay, indicating that the existence of EPS beads provides plastic resistance. With the increase of cement content, the cyclic stress-strain relationship tends to be steeper. Increasing cement content and confining pressure could improve the cyclic strength and cyclic stiffness of RDSEM.

A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions

  • Rabhi, Mohamed;Benrahou, Kouider Halim;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Adda Bedia, E.A.;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • 제22권2호
    • /
    • pp.119-132
    • /
    • 2020
  • In this study a new innovative three unknowns trigonometric shear deformation theory is proposed for the buckling and vibration responses of exponentially graded sandwich plates resting on elastic mediums under various boundary conditions. The key feature of this theoretical formulation is that, in addition to considering shear deformation effect, it has only three unknowns in the displacement field as in the case of the classical plate theory (CPT), contrary to five as in the first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Material characteristics of the sandwich plate faces are considered to vary within the thickness direction via an exponential law distribution as a function of the volume fractions of the constituents. Equations of motion are obtained by employing Hamilton's principle. Numerical results for buckling and free vibration analysis of exponentially graded sandwich plates under various boundary conditions are obtained and discussed. Verification studies confirmed that the present three -unknown shear deformation theory is comparable with higher-order shear deformation theories which contain a greater number of unknowns.

Experimental study on fracture behavior of SCC pavement slab containing crumb rubber under cyclic loading

  • Wang, Jiajia;Chen, Xudong;Wu, Chaoguo;Shi, Zhenxiang;Cheng, Xiyuan
    • Computers and Concrete
    • /
    • 제29권1호
    • /
    • pp.47-57
    • /
    • 2022
  • The increase in waste tires has brought serious environmental problems. Using waste tires rubber particles as aggregate in concrete can reduce pollution and decrease the usage of natural aggregate. The paper describes an investigation on flexural bearing capacity of self-compacting concrete (SCC) pavement slabs containing crumb rubber. Cyclic loading tests with different stress ratios and loading frequencies are carried out on SCC pavement slabs containing crumb rubber. Based on Paris Law and test data, the fatigue life of SCC pavement slab containing crumb rubber is discussed, and a revised mathematical model is established to predict the fatigue life of SCC pavement slab containing crumb rubber. The model applies to different stress ratios and loading frequencies. The fatigue life of SCC pavement slab containing crumb rubber is affected by the stress ratio and loading frequency. The fatigue life increases with the increase of stress ratio and loading frequency. Real-time acoustic emission (AE) signals in the SCC pavement slab containing crumb rubber under cyclic loading are measured, and the characteristics of crack propagation in the SCC pavement slab containing crumb rubber under different stress ratios and loading frequencies are compared. The AE signals provide abundant information of fracture process zone and crack propagation. The variation of AE ringing count, energy and b-value show that the fracture process of SCC pavement slab containing crumb rubber is divided into three stages.

UF pretreatment at elevated temperature within the scheme of hybrid desalination: Performance and environmental impact

  • Agashichev, Sergey;Kumar, Jayesh
    • Membrane and Water Treatment
    • /
    • 제8권3호
    • /
    • pp.279-292
    • /
    • 2017
  • This study was aimed at ultrafiltration (UF) as a pretreatment before reverse osmosis (RO) within the scheme of hybrid reverse osmosis-multistage flush (RO-MSF) desalination. Seawater at elevated temperature (after MSF heat-exchangers) was used as a feed in this process. The pretreatment system was represented as a set of functionally-linked technological segments such as: UF filtration, backwashing, chemical- enhanced backwashing, cleaning, waste disposal, etc. The process represents the sequences of operating cycles. The cycle, in turn, consists of the following unit operations: filtration, backwashing and chemical-enhanced backwashing (CEB). Quantitative assessment was based on the following indicators: normalized permeability, transmembrane pressure, specific energy and water consumption, specific waste generation. UF pre-treatment is accompanied by the following waste streams: $W1=1.19{\times}10$ power of $-2m^3$ (disposed NaOCl with 0.0044% wt.)/$m^3$ (filtrate); $W2=5.95{\times}10$ power of $-3m^3$ (disposed $H_2SO_4$ with 0.052% wt.)/$m^3$(filtrate); $W3=7.26{\times}10$ power of $-2m^3$ (disposed sea water)/$m^3$ (filtrate). Specific energy consumption is $1.11{\times}10$ power of $-1kWh/m^3$ (filtrate). The indicators evaluated over the cycles with conventional (non-chemical) backwashing were compared with the cycles accompanied by CEB. A positive impact of CEB on performance indicators was demonstrated namely: normalized UF resistance remains unchanged within the regime accompanied by CEB, whereas the lack of CEB results in 30% of its growth. Those quantitative indicators can be incorporated into the target function for solving different optimization problems. They can be used in the software for optimisation of operating regimes or in the synthesis of optimal flow- diagram. The cycle characteristics, process parameters and water quality data are attached.

Comparison of long-term behavior between prestressed concrete and corrugated steel web bridges

  • Zhan, Yulin;Liu, Fang;Ma, Zhongguo John;Zhang, Zhiqiang;Duan, Zengqiang;Song, Ruinian
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.535-550
    • /
    • 2019
  • Prestressed concrete (PC) bridges using corrugated steel webbing have emerged as one of the most promising forms of steel-concrete composite bridge. However, their long-term behavior is not well understood, especially in the case of large-span bridges. In order to study the time-dependent performance, a large three-span PC bridge with corrugated steel webbing was compared to a similar conventional PC bridge to examine their respective time-dependent characteristics. In addition, a three-dimensional finite element method with step-by-step time integration that takes into account cantilever construction procedures was used to predict long-term behaviors such as deflection, stress distribution and prestressing loss. These predictions were based upon four well-established empirical creep prediction models. PC bridges with a corrugated steel web were observed to have a better long-term performance relative to conventional PC bridges. In particular, it is noted that the pre-cambering for PC bridges with a corrugated steel web could be smaller than that of conventional PC bridges. The ratio of side-to-mid span has great influence on the long-term deformation of PC bridges with a corrugated steel web, and it is suggested that the design value should be between 0.4 and 0.6. However, the different creep prediction models still showed a weak homogeneity, thus, the further experimental research and the development of health monitoring systems are required to further progress our understanding of the long-term behavior of PC bridges with corrugated steel webbing.

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory

  • Mouffoki, Abderrahmane;Bedia, E.A. Adda;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.369-383
    • /
    • 2017
  • In this work, the effects of moisture and temperature on free vibration characteristics of functionally graded (FG) nanobeams resting on elastic foundation is studied by proposing a novel simple trigonometric shear deformation theory. The main advantage of this theory is that, in addition to including the shear deformation influence, the displacement field is modeled with only 2 unknowns as the case of the classical beam theory (CBT) and which is even less than the Timoshenko beam theory (TBT). Three types of environmental condition namely uniform, linear, and sinusoidal hygrothermal loading are studied. Material properties of FG beams are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from Hamilton's principle. Numerical examples are presented to show the validity and accuracy of present shear deformation theories. The effects of hygro-thermal environments, power law index, nonlocality and elastic foundation on the free vibration responses of FG beams under hygro-thermal effect are investigated.

Experimental investigations on performance of concrete incorporating Precious Slag Balls (PS Balls) as fine aggregates

  • Sharath, S.;Gayana, B.C.;Reddy, Krishna R.;Chandar, K. Ram
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.239-246
    • /
    • 2019
  • Substitution of natural fine aggregates with industrial by-products like precious slag balls (PS Balls) offers various advantages like technical, economic and environmental which are very important in the present era of sustainability in construction industry. PS balls are manufactured by subjecting steel slag to slag atomizing Technology (SAT) which imparts them the desirable characteristics of fine aggregates. The main objective of this research paper is to assess the feasibility of producing good quality concrete by using PS balls, to identify the potential benefits by their incorporation and to provide solution for increasing their utilization in concrete applications. The study investigates the effect of PS balls as partial replacement of fine aggregates in various percentages (20%, 40%, 60%, 80% and 100%) on mechanical properties of concrete such as compressive strength, splitting tensile strength, and flexural strength. The optimum mix was found to be at 40% replacement of PS balls with maximum strength of 62.89 MPa at 28 days curing. Permeability of concrete was performed and it resulted in a more durable concrete with replacement of PS balls at 40% and 100% as fine aggregates. These two specific values were considered as optimum replacement is 40% and also the maximum possible replacement is 100%. Scanning electron microscope (SEM) analysis was done and it was found that the PS balls in concrete were unaffected and with optimum percentage of PS balls as fine aggregates in concrete resulted in good strength and less cracks. Hence, it is possible to produce good workable concrete with low water to cement ratio and higher strength concrete by incorporating PS balls.

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

  • Shin, Myoungsu;LaFave, James M.
    • Structural Engineering and Mechanics
    • /
    • 제18권5호
    • /
    • pp.645-669
    • /
    • 2004
  • In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.

A computer vision-based approach for crack detection in ultra high performance concrete beams

  • Roya Solhmirzaei;Hadi Salehi;Venkatesh Kodur
    • Computers and Concrete
    • /
    • 제33권4호
    • /
    • pp.341-348
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has received remarkable attentions in civil infrastructure due to its unique mechanical characteristics and durability. UHPC gains increasingly dominant in essential structural elements, while its unique properties pose challenges for traditional inspection methods, as damage may not always manifest visibly on the surface. As such, the need for robust inspection techniques for detecting cracks in UHPC members has become imperative as traditional methods often fall short in providing comprehensive and timely evaluations. In the era of artificial intelligence, computer vision has gained considerable interest as a powerful tool to enhance infrastructure condition assessment with image and video data collected from sensors, cameras, and unmanned aerial vehicles. This paper presents a computer vision-based approach employing deep learning to detect cracks in UHPC beams, with the aim of addressing the inherent limitations of traditional inspection methods. This work leverages computer vision to discern intricate patterns and anomalies. Particularly, a convolutional neural network architecture employing transfer learning is adopted to identify the presence of cracks in the beams. The proposed approach is evaluated with image data collected from full-scale experiments conducted on UHPC beams subjected to flexural and shear loadings. The results of this study indicate the applicability of computer vision and deep learning as intelligent methods to detect major and minor cracks and recognize various damage mechanisms in UHPC members with better efficiency compared to conventional monitoring methods. Findings from this work pave the way for the development of autonomous infrastructure health monitoring and condition assessment, ensuring early detection in response to evolving structural challenges. By leveraging computer vision, this paper contributes to usher in a new era of effectiveness in autonomous crack detection, enhancing the resilience and sustainability of UHPC civil infrastructure.