• Title/Summary/Keyword: Environment strength

Search Result 2,641, Processing Time 0.033 seconds

Development of Manufacturing System Package for CFRP Machining (패키지형 탄소섬유복합재 가공시스템 개발)

  • Kim, Hyo-Young;Kim, Tae-Gon;Lee, Seok-Woo;Yoon, Han-Sol;Kyung, Dae-Su;Choi, In-Hue;Choi, Hyun;Ko, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.431-438
    • /
    • 2016
  • Recently, concerns about the environment are becoming more important because of global warming and the exhaustion of earth's resources. In the aviation and automobile industries, the application of light materials is increasingly important for eco-friendly and effective. Carbon Fiber Reinforced Plastics is a composite material which great formability and the high strength of carbon fiber. CFRP, which is both light and strong, is hard to manufacture. In addition, CFRP machining has a high chance of defects. This research discusses the development of a manufacturing system package for CFRP machining. It involving CFRP Drilling/Water-jet Manufacturing Machines, Inspection/Post-processing Systems, CNC platform for an EtherCAT servo Communication, Flexible Manufacturing Systems and CFRP machining Processes.

Antiosteoporotic Effects of Polygoni Multiflori Radix (PMR) in Ovariectomized (OVX)-Induced Osteoporosis ddY Mice (하수오 물 추출물이 마우스 골다공증에 미치는 영향)

  • Do, Yoon-Jung;Ku, Sae-Kwang;Kim, Hong-Tae;Oh, Tae-Ho;Cho, Young-Moo;Kim, Sung-Woo;Ryu, Il-Sun;Lee, Keun-Woo
    • Journal of Veterinary Clinics
    • /
    • v.28 no.4
    • /
    • pp.375-386
    • /
    • 2011
  • Polygoni Multiflori Radix (PMR), a dried root tuber of Polygonum multiflorum Thunberg with bioactivities in bone metabolism is one of the most famous tonic traditional medicines. To observe in vivo anti-osteoporotic efficacy of PMR extracts, we orally administered once a day for 28 days (Qd ${\times}$ 28) to bilateral ovariectomized (OVX)-induced osteoporosis ddY mice after 1 week of recovery periods at 125, 250 and 500 mg/kg (of body weight). A positive control drug, Alendronate (FOSA) 10 mg/kg-dosing group was added. As results of OVX-induced osteoporotic process, estrogen-deficient osteoporotic changes were also dramatically decreased in all PMR extracts-dosing groups. Especially middle dosage of PMR extracts, 250 mg/kg constantly and significantly (p < 0.01 or p < 0.05) inhibited the loss of bone strength and bone quality. Based on the results, it was concluded that PMR extracts (125, 250 or 500 mg/kg; orally dosing) has relatively good favorable effect to prevention and/or treatment of OVX-induced osteoporosis. Therefore, although the efficacy was slighter than that of Alendronate on the inhibition of bone loss, it is expected that PMR extracts will be promising as a new anti-osteoporotic agents for prevent the fracture induced in osteoporotic patients because natural herbal medicine origin PMR extracts will be dose not show serious side effects especially the problem in upper alimentary irritation by bisphosphonate and hypercalcaemia of parathyroid hormone analogs.

Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology (자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술)

  • Chang, InSung;Cho, YongJoon;Park, HyunSung;So, DeugYoung
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.

Physical Properties of Shock-Absorbing Materials Made of Pulp Fibers for Packaging (포장완충재용 펄프 섬유 압출물의 물리적 특성)

  • Song, Dae-Bin;Kim, Chul-Hwan;Jung, Hyo-Suk;Lee, Young-Min;Kim, Jae-Ok;Kim, Gyeong-Yun;Park, Chong-Yawl
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.41-49
    • /
    • 2005
  • Styrofoam as shock-absorbing materials for packaging has been regarded as one of non-biodegradable products leading to soil contamination at a landfill and release of dioxine during its incineration. For avoiding severe burdens on our environments by styrofoam, it must be replaced by environment-friendly materials. In order to evaluate availability of pulp fibers as a substitute for styrofoam, various extrusion processes were applied for making optimal biodegradable products. Then thermomechanical pulp fibers made of Pinus radiata and Pinus rigida were uniformly mixed with other additives such as starch and polyvinyl alcohol prior to expansion. The physical properties of the final products were examined by measuring expansion efficiency, compression strength, and elastic modulus. Wheat starch played a key role to maintain optimal flowing conditions within the barrel of the extruder irrespective of addition of soluble starch and polyvinyl alcohol. However, as the amounts of wheat starch in raw-materials increased, the elastic modulus of the expanded materials greatly increased. High elastic modulus is not suitable as shock-absorbing products for packaging. Thus the wheat starch must be added at a minimum if possible, that is, below 20% based on oven-dried weight of pulp fibers. the elastic modulus of the expanded products was decreased as their moisture contents increased. For the products containing 20% wheat starch, the lowest elastic modulus, 844.64 kPa was obtained under 10% of the moisture content. This was similar to that of styrofoam.

Evaluation of Defiberation by Organosolv Ethanolamine Pulping for Integral Utilization of Oil Palm EFB (오일팜 바이오매스 EFB 고도 활용을 위한 Organosolv 에탄올아민 펄핑에 따른 섬유화 특성평가)

  • Kim, Chul-Hwan;Kim, Dong-Seop;Sung, Yong Joo;Hong, Hae-Eun;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • Organosolv ethanolamine pulping for oil palm empty fruit bunches(EFB) were evaluated in this study. The screen yield by the ethanolamine pulping were higher than that by the soda pulping at the same operation conditions. The higher concentration of ethanolamine solvent resulted in the higher yield and the lower contents of residual lignin. The EFB pulp fibers were the narrower in fiber width but the higher in coarseness than those of the hardwood pulp fiber, while the fiber length of the EFB pulp fiber were similar to that of the hardwood fiber. The intrinsic zero span tensile testing showed the EFB pulp fiber by the 80% ethanolamine pulping were the stronger than the fiber by the soda pulping. The results of this study supported that the ethanolamine pulping could be used as an alternative pulping method for the EFB.

Adhesion improvement between metals and fluoropolymers by ion assisted reaction (이온보조반응에 의한 금속과 불소계 고분자의 접착력 증진)

  • Han, Sung;Cho, Jun-Sik;Choi, Sung-Chang;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2001
  • Polyvinylidenefluoride and Polytetrafluoroethylene have been irradiated by 1 keV Ar+ ion beam in an $O_2$ environment. Hydrophilic functional groups (such as -(C-O)-,-(C=O)-,-(C=O)-O- and so on) were formed on fluoropolymers. Contact angles of water to PVDF were reduced from $75^{\circ}$ to $31^{\circ}$. Re-increase of contact angle was originated from carbonization phase in case of high dose irradiation above $1{\times}10^{16} Ar^+cm^2$. Contact angles to PTFE decreased at low dose irradiation and were exaggerated to about $140^{\circ}$ due to cone type surface at high dose irradiation. Hydrophilic functional groups have played an important role on adhesion between metal and fluoropolymers by acid-base interaction and chemical bond formation. Adhesion of Pt/PVDF was enhanced by acid-base interaction because Pt is inert metal. Chemical bond formation between Cu and PTFE could enlarge the adhesion strength of Cu/PTFE.

  • PDF

A Study on the Stress Corrosion Cracking Propagation Behaviors of high Strength Steel by Means of Emission Test (음향방출시험에 의한 고장력강의 응력부식 균열전파 거동에 관한 연구)

  • Yu, Hyo-Seon;Jeong, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.361-371
    • /
    • 1993
  • Among the various test methods for stress corrusiun cracking(SCC) susceptibility evaluatiun, the slow stram rate test(SSHT) method is a rapid and effective nwthod to evaluate the SCC susceptibility of metal in relatively short time. But it is very difficult to analyze the microfracture behaviors in SCC process by using the test(SSRT) method only. Up to now, it has been well known that the acoustic emission(AE) test is the effective technique to monitor the microcrack initiation and propagation in material fracture pmcess. Therefore. in this paper, we analyzed the correlation between the see process and the characteristics of AE signal by using the SSHT and the AE test. According to the test results. the AE signals produced from the material microfracture were clearly depended on the test environment. The AE signal characteristics generated during see process in synthetic sea water were comparatively greater than those. in air. In addition, the SCC behaviors could be definitely evaluated by the amplitude parameter of AE signals.

  • PDF

An Overview of Biopulping Research: Discovery and Engineering

  • Scott, Gary M.;Akhtar, Masood;Lentz, Michael J.;Horn, Eric;Swaney, Ross E.;Kirk, T.Kent
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.18-27
    • /
    • 1998
  • Biopulping is defined as the treatment of wood chips with lignin-degrading fungi prior to pulping. Fungal pretreatment prior to mechanical pulping reduces electrical energy requirements during refining or increases mill throughput, improves paper strength, reduces the pitch content, and reduces the environmental impact of pulping. Our recent work involved scaling up the biopulping process towards the industrial level, investigating both the engineering and economic feasibility. We envision the process to be done in either a chip-pile or silo-based system for which several factors need to be considered: the degree of decontamination, a hospitable environment for the fungus, and the overall process economics. Currently, treatment of the chips with low-pressure steam is sufficient for decontamination and a simple, forced ventilation system maintains the proper temperature, humidity, and moisture conditions, thus promoting uniform growth of the fungus. The pilot-scale trial resulted in the successful treatment of 4 tons of wood chips (dry weight basis) with results comparable to those on a laboratory. Larger, 40-ton trials were also successful, with energy savings and paper properties comparable with the laboratory scale. The overall economics of the process also look very favorable and can result in significant annual savings to the mill. Although the current research has focused on biopulping for mechanical pulping, it is also beneficial for sulfite chemical pulping and some applications to recycled fiber have been investigated.

  • PDF

A Disjoint Multi-path Routing Protocol for Efficient Transmission of Collecting Data in Wireless Sensor Network (무선 센서 네트워크에서 수집 데이터의 효과적인 전송을 위한 비겹침 다중경로 라우팅 프로토콜)

  • Han, Dae-Man;Lim, Jae-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.17C no.5
    • /
    • pp.433-440
    • /
    • 2010
  • Energy efficiency, low latency and scalability for wireless sensor networks are important requirements, especially, the wireless sensor network consist of a large number of sensor nodes should be minimized energy consumption of each node to extend network lifetime with limited battery power. An efficient algorithm and energy management technology for minimizing the energy consumption at each sensor node is also required to improve transfer rate. Thus, this paper propose no-overlap multi-pass protocol provides for sensor data transmission in the wireless sensor network environment. The proposed scheme should minimize network overhead through reduced a sensor data translation use to searched multi-path and added the multi-path in routing table. Proposed routing protocol may minimize the energy consumption at each node, thus prolong the lifetime of the sensor network regardless of where the sink node is located outside or inside the received signal strength range. To verify propriety proposed scheme constructs sensor networks adapt to current model using the real data and evaluate consumption of total energy.

Surface Modification and Heat Treatment of Ti Rod by Electro Discharge (전기방전에 의한 Ti rod의 열처리 및 표면개질 특성에 관한 연구)

  • Byun, C.S.;Oh, N.H.;An, Y.B.;Cheon, Y.W.;Kim, Y.H.;Cho, Y.J.;Lee, C.M.;Lee, W.H.
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.168-172
    • /
    • 2006
  • Single pulse of 2.0 to 3.5 kJ from $150{\mu}F$ capacitor was applied to the cp Ti rod for its surface modification and heat treatment. Under the conditions of using 2.0 and 2.5 kJ of input energy, no phase transformation has been occurred. However, the hardness and tensile strength decreased and the elongation increased after a discharge due to a slight grain growth. By using more than 3.0 kJ of input energy, the electro discharge made a phase transformation and the hardness at the edge of the cross section increased significantly. The Ti rod before a discharge was lightly oxidized and was primarily in the form of $TiO_2$. However, the surface of the Ti rod has been instantaneously modified by a discharge into the main form of TiN from $TiO_2$. Therefore, the electro discharge can modify its surface chemistry in times as short as $200{\mu}sec$ by manipulating the input energy, capacitance, and discharging environment.