• Title/Summary/Keyword: Environment sensor

Search Result 3,395, Processing Time 0.03 seconds

Vital Sign Detection in a Noisy Environment by Undesirable Micro-Motion (원하지 않는 작은 동작에 의한 잡음 환경 내 생체신호 탐지 기법)

  • Choi, In-Oh;Kim, Min;Choi, Jea-Ho;Park, Jeong-Ki;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.418-426
    • /
    • 2019
  • Recently, many studies on vital sign detection using a radar sensor related to Internet of Things(IoT) smart home systems have been conducted. Because vital signs such as respiration and cardiac rates generally cause micro-motions in the chest or back, the phase of the received echo signal from a target fluctuates according to the micro-motion. Therefore, vital signs are usually detected via spectral analysis of the phase. However, the probability of false alarms in cardiac rate detection increases as a result of various problems in the measurement environment, such as very weak phase fluctuations caused by the cardiac rate. Therefore, this study analyzes the difficulties of vital sign detection and proposes an efficient vital sign detection algorithm consisting of four main stages: 1) phase decomposition, 2) phase differentiation and filtering, 3) vital sign detection, and 4) reduction of the probability of false alarm. Experimental results using impulse-radio ultra-wideband radar show that the proposed algorithm is very efficient in terms of computation and accuracy.

Estimation of the Dimensions of Horticultural Products and the Mean Plant Height of Plug Seedlings Using Three-Dimensional Images (3차원 영상을 이용한 원예산물의 크기와 플러그묘의 평균초장 추정)

  • Jang, Dong Hwa;Kim, Hyeon Tae;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.358-365
    • /
    • 2019
  • This study was conducted to estimate the dimensions of horticultural products and the mean plant height of plug seedlings using three-dimensional (3D) images. Two types of camera, a ToF camera and a stereo-vision camera, were used to acquire 3D images for horticultural products and plug seedlings. The errors calculated from the ToF images for dimensions of horticultural products and mean height of plug seedlings were lower than those predicted from stereo-vision images. A new indicator was defined for determining the mean plant height of plug seedlings. Except for watermelon with tap, the errors of circumference and height of horticultural products were 0.0-3.0% and 0.0-4.7%, respectively. Also, the error of mean plant height for plug seedlings was 0.0-5.5%. The results revealed that 3D images can be utilized to estimate accurately the dimensions of horticultural products and the plant height of plug seedlings. Moreover, our method is potentially applicable for segmenting objects and for removing outliers from the point cloud data based on the 3D images of horticultural crops.

Active control of pump noise of dishwashers using FxLMS algorithm (FxLMS 알고리듬 기법을 이용한 식기 세척기의 펌프 소음 능동 제어)

  • Tark, Un-su;Oh, Han-Eum;Hong, Chinsuk;Jeong, Weui-Bong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.46-54
    • /
    • 2021
  • In this paper, active noise control was performed to reduce radiated noise in the low frequency band of dishwashers. First, through an analysis of the noise environment of the dishwasher, it was confirmed that the pump noise contributed the most to the radiated noise in the low frequency band, From the result of the noise environment analysis, the reference signal was selected to be the vibration signal of the pump body. The reference signal was obtained by using the accelerometer on the pump body, which can prevent acoustic feedback. The error signal sensor was selected as a microphone located at 1 m in front of the dishwasher and 0.5 m in height. And to design the controller, the error signal and the reference signal were measured at the operational rpms of the dishwasher at 2,500 rpm, 2,600 rpm and 2,800 rpm, and the secondary path transfer function was measured. The designed controller was mounted on Digital Signal Processor (DSP) equipment, and the control performance was verified experimentally. As a result of the measurement at the 3 operational rpms, the 7th multiple component of pump operating frequency decreased by 1.93 dB, 4.43 dB, 5.15 dB per rpm, and the 12th multiple component decreased by 6.67 dB, 2.34 dB, 4.28 dB per rpm. And overall Sound Pressure Level (SPL) decreased by 0.84 dB, 2.58 dB, 1.48 dB by rpm.

Design and Implementation K-Band EWRG Transceiver for High-Resolution Rainfall Observation (고해상도 강수 관측을 위한 K-대역 전파강수계 송수신기 설계 및 구현)

  • Choi, Jeong-Ho;Lim, Sang-Hun;Park, Hyeong-Sam;Lee, Bae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.646-654
    • /
    • 2020
  • This paper is to develop an electromagnetic wave-based sensor that can measure the spatial distribution of precipitation, and to a electromagnetic wave rain gauge (hereinafter, "EWRG") capable of simultaneously measuring rainfall, snowfall, and wind field, which are the core of heavy rain observation. Through this study, the LFM transmission and reception signals were theoretically analyzed. In addition, In order to develop a radar transceiver, LFM transceiver design and simulation were conducted. In this paper, we developed a K-BAND pulse-driven 6W SSPA(Solid State Power Amplifiers) transceiver using a small HMIC(Hybrid Microwave Integrated Circuit). It has more than 6W of output power and less than 5dB of receiving NF(Noise Figure) with short duty of 1% in high temperature environment of 65 degrees. The manufactured module emits LFM and Square Pulse waveform with the built-in waveform generator, and the receiver has more than 40dB of gain. The transceiver developed in this paper can be applied to the other small weather radar.

Analysis of UAV-based Multispectral Reflectance Variability for Agriculture Monitoring (농업관측을 위한 다중분광 무인기 반사율 변동성 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1379-1391
    • /
    • 2020
  • UAV in the agricultural application are capable of collecting ultra-high resolution image. It is possible to obtain timeliness images for phenological phases of the crop. However, the UAV uses a variety of sensors and multi-temporal images according to the environment. Therefore, it is essential to use normalized image data for time series image application for crop monitoring. This study analyzed the variability of UAV reflectance and vegetation index according to Aviation Image Making Environment to utilize the UAV multispectral image for agricultural monitoring time series. The variability of the reflectance according to environmental factors such as altitude, direction, time, and cloud was very large, ranging from 8% to 11%, but the vegetation index variability was stable, ranging from 1% to 5%. This phenomenon is believed to have various causes such as the characteristics of the UAV multispectral sensor and the normalization of the post-processing program. In order to utilize the time series of unmanned aerial vehicles, it is recommended to use the same ratio function as the vegetation index, and it is recommended to minimize the variability of time series images by setting the same time, altitude and direction as possible.

Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning (GEMS 영상과 기계학습을 이용한 산불 연기 탐지)

  • Jeong, Yemin;Kim, Seoyeon;Kim, Seung-Yeon;Yu, Jeong-Ah;Lee, Dong-Won;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.967-977
    • /
    • 2022
  • The occurrence and intensity of wildfires are increasing with climate change. Emissions from forest fire smoke are recognized as one of the major causes affecting air quality and the greenhouse effect. The use of satellite product and machine learning is essential for detection of forest fire smoke. Until now, research on forest fire smoke detection has had difficulties due to difficulties in cloud identification and vague standards of boundaries. The purpose of this study is to detect forest fire smoke using Level 1 and Level 2 data of Geostationary Environment Monitoring Spectrometer (GEMS), a Korean environmental satellite sensor, and machine learning. In March 2022, the forest fire in Gangwon-do was selected as a case. Smoke pixel classification modeling was performed by producing wildfire smoke label images and inputting GEMS Level 1 and Level 2 data to the random forest model. In the trained model, the importance of input variables is Aerosol Optical Depth (AOD), 380 nm and 340 nm radiance difference, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), formaldehyde (HCHO), nitrogen dioxide (NO2), 380 nm radiance, and 340 nm radiance were shown in that order. In addition, in the estimation of the forest fire smoke probability (0 ≤ p ≤ 1) for 2,704 pixels, Mean Bias Error (MBE) is -0.002, Mean Absolute Error (MAE) is 0.026, Root Mean Square Error (RMSE) is 0.087, and Correlation Coefficient (CC) showed an accuracy of 0.981.

Analysis of User Requirements for Development of Vessel Traffic Services Cloud System (선박교통관제 클라우드 시스템 개발에 따른 사용자 요구사항 분석)

  • Lee, Li-Na;Kim, Joo-Sung;Lee, Hong-Hoon;Lee, Jin-Suk;Namgung, Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.314-323
    • /
    • 2022
  • Vessel Traffic Services (VTS) operators perform traffic management tasks using VTS systems and sensor equipment designated as VTS facilities to promote the safety and efficiency of vessel traffic. The necessary VTS information for effective operations could be obtained through the additional access of various information channels other than the designated VTS facility. To unify these various information access windows, the development of the VTS cloud system is in progress. In this study, the operational information analysis for VTS was performed through VTS tasks-facility linkage analysis to identify the user required information according to the introduction of the VTS cloud system. The VTS task analysis was performed through research of the international and domestic literature, and expert interviews. The necessary information were identified and linked according to the VTS facilities. As a result of the analysis, 37 categories of necessary information were identified for internal and external information windows, and 8 information windows were selected other than the present VTS equipment. The identified user requirements would be applied to the structure design of the VTS cloud system. In the future, it is necessary to update user requirements through scenario-based user operation analysis and to conduct additional research on the system interface design.

A Basic Study on the Reduction of Illuminated Reflection for improving the Safety of Self-driving at Night (야간 자율주행 안전성 향상을 위한 조명반사광 감소에 관한 기초연구)

  • Park, Chang min
    • Journal of Platform Technology
    • /
    • v.10 no.3
    • /
    • pp.60-68
    • /
    • 2022
  • As AI-technology develops, interest in the safety of autonomous driving is increasing. Recently, autonomous vehicles have been increasing, but efforts to solve side effects have been sluggish. In particular, night autonomous vehicles have more problems. This is because the probability of accidents is higher in the night driving environment than in the day environment. There are more factors to consider for self-driving at night. Among these factors, reflection of light or reflected light of lighting may be a fundamental cause of night accidents. Therefore, this study proposes method to reduce accidents and improve safety by reducing reflected light generated by the headlights of opposite vehicles or various surrounding light that appear as an important problem in night autonomous vehicles. Therefore, first, in an image obtained by a sensor of a night autonomous vehicle, illumination reflected light is extracted using reflected light characteristic information, and a color of each pixel using a reflection coefficient is found to reduce a special area generated by geometric characteristics. In addition, we find a new area using only the brightness component of the specular area, define it as Illuminated Reflection Light (IRL), and finally present a method to reduce it. Although the illumination reflection light could not be completely reduce, generally satisfactory results could be obtained. Therefore, it is believed that the proposed study can reduce casualties by solving the problems of night autonomous driving and improving safety.

A Study on Transport Robot for Autonomous Driving to a Destination Based on QR Code in an Indoor Environment (실내 환경에서 QR 코드 기반 목적지 자율주행을 위한 운반 로봇에 관한 연구)

  • Se-Jun Park
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.26-38
    • /
    • 2023
  • This paper is a study on a transport robot capable of autonomously driving to a destination using a QR code in an indoor environment. The transport robot was designed and manufactured by attaching a lidar sensor so that the robot can maintain a certain distance during movement by detecting the distance between the camera for recognizing the QR code and the left and right walls. For the location information of the delivery robot, the QR code image was enlarged with Lanczos resampling interpolation, then binarized with Otsu Algorithm, and detection and analysis were performed using the Zbar library. The QR code recognition experiment was performed while changing the size of the QR code and the traveling speed of the transport robot while the camera position of the transport robot and the height of the QR code were fixed at 192cm. When the QR code size was 9cm × 9cm The recognition rate was 99.7% and almost 100% when the traveling speed of the transport robot was less than about 0.5m/s. Based on the QR code recognition rate, an experiment was conducted on the case where the destination is only going straight and the destination is going straight and turning in the absence of obstacles for autonomous driving to the destination. When the destination was only going straight, it was possible to reach the destination quickly because there was little need for position correction. However, when the destination included a turn, the time to arrive at the destination was relatively delayed due to the need for position correction. As a result of the experiment, it was found that the delivery robot arrived at the destination relatively accurately, although a slight positional error occurred while driving, and the applicability of the QR code-based destination self-driving delivery robot was confirmed.

  • PDF

Inferring Pedestrian Level of Service for Pathways through Electrodermal Activity Monitoring

  • Lee, Heejung;Hwang, Sungjoo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1247-1248
    • /
    • 2022
  • Due to rapid urbanization and population growth, it has become crucial to analyze the various volumes and characteristics of pedestrian pathways to understand the capacity and level of service (LOS) for pathways to promote a better walking environment. Different indicators have been developed to measure pedestrian volume. The pedestrian level of service (PLOS), tailored to analyze pedestrian pathways based on the concept of the LOS in transportation in the Highway Capacity Manual, has been widely used. PLOS is a measurement concept used to assess the quality of pedestrian facilities, from grade A (best condition) to grade F (worst condition), based on the flow rate, average speed, occupied space, and other parameters. Since the original PLOS approach has been criticized for producing idealistic results, several modified versions of PLOS have also been developed. One of these modified versions is perceived PLOS, which measures the LOS for pathways by considering pedestrians' awareness levels. However, this method relies on survey-based measurements, making it difficult to continuously deploy the technique to all the pathways. To measure PLOS more quantitatively and continuously, researchers have adopted computer vision technologies to automatically assess pedestrian flows and PLOS from CCTV videos. However, there are drawbacks even with this method because CCTVs cannot be installed everywhere, e.g., in alleyways. Recently, a technique to monitor bio-signals, such as electrodermal activity (EDA), through wearable sensors that can measure physiological responses to external stimuli (e.g., when another pedestrian passes), has gained popularity. It has the potential to continuously measure perceived PLOS. In their previous experiment, the authors of this study found that there were many significant EDA responses in crowded places when other pedestrians acting as external stimuli passed by. Therefore, we hypothesized that the EDA responses would be significantly higher in places where relatively more dynamic objects pass, i.e., in crowded areas with low PLOS levels (e.g., level F). To this end, the authors conducted an experiment to confirm the validity of EDA in inferring the perceived PLOS. The EDA of the subjects was measured and analyzed while watching both the real-world and virtually created videos with different pedestrian volumes in a laboratory environment. The results showed the possibility of inferring the amount of pedestrian volume on the pathways by measuring the physiological reactions of pedestrians. Through further validation, the research outcome is expected to be used for EDA-based continuous measurement of perceived PLOS at the alley level, which will facilitate modifying the existing walking environments, e.g., constructing pathways with appropriate effective width based on pedestrian volume. Future research will examine the validity of the integrated use of EDA and acceleration signals to increase the accuracy of inferring the perceived PLOS by capturing both physiological and behavioral reactions when walking in a crowded area.

  • PDF