• Title/Summary/Keyword: Environment radioactivity

Search Result 130, Processing Time 0.036 seconds

Real-time wireless marine radioactivity monitoring system using a SiPM-based mobile gamma spectroscopy mounted on an unmanned marine vehicle

  • Min Sun Lee;Soo Mee Kim;Mee Jang;Hyemi Cha;Jung-Min Seo;Seungjae Baek;Jong-Myoung Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2158-2165
    • /
    • 2023
  • Marine radioactivity monitoring is critical for taking immediate action in case of unexpected nuclear accidents at nuclear facilities located near coastal areas. Especially when the level of contamination is not predictable, mobile monitoring systems will be useful for wide-area ocean radiation survey and for determination of the level of radioactivity. Here, we used a silicon photomultiplier and a high-efficiency GAGG crystal to fabricate a compact, battery-powered gamma spectroscopy that can be used in an ocean environment. The developed spectroscopy has compact dimensions of 6.5 × 6.5× 8 cm3 and weighs 560 g. We used LoRa, a low-power wireless protocol for communication. Successful data transmission was achieved within 1.4 m water depth. The developed gamma spectroscopy was able to detect radioactivity from a 137Cs point source (3.7 kBq) at a distance of 20 cm in water. Moreover, we demonstrated an unmanned radioactivity monitoring system in a real sea by combining unmanned surface vehicle with the developed gamma spectroscopy. A hidden 137Cs source (3.07 MBq) was detected by the unmanned system at a distance of 3 m. After successfully testing the developed mobile spectroscopy in an ocean environment, we believe that our proposed system will be an effective solution for mobile real-time marine radioactivity monitoring.

Study on Radioactive Contamination of Plant Nearby Nuclear Power Plant - Focused on Pinus thunbergii Parl. and Viburnum awabuki K. KOCH - (원전주변 지역 식물의 방사능 오탁에 관한 연구 - 해송과 아왜나무를 대상으로 -)

  • Kang, Tai-Ho;Zhao, Hong-Xia;Jeong, Jin-Wook;Kook, Seong-Do
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.3
    • /
    • pp.55-62
    • /
    • 2013
  • Generally, the radioactivity from NPP(Nuclear Power Plants) operation can be released below 3% of DRLs(Derived Release Limits) to environment. It was tried to understand which plant was efficient for absorbing radioactivity in this study. Pinus thunbergii Parl. and Viburnum awabuki K. KOCH were analyzed for radioisotope absorption. The samples were collected at three different locations depending on the distance from NPP at the vicinity 10km away, and 30km away. Gamma radionuclide was not detected from the samples, which means that the direct transition into the plant was not significant. Meanwhile, the very low level of radioactive tritium was detected in the samples. One remark was that every plant has different ability for tritium absorption. These results are expected to be applied to propagation and transplanting in radioactively contaminated area or reducing radioactivity in the soil and water near the plants.

Multi-Radioactivity Measurement System Design for Indoor Environmental Monitoring (실내 환경 모니터링을 위한 다중 방사능계측 시스템 설계)

  • Sagong, Byung-Il;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.459-461
    • /
    • 2022
  • In this paper, we propose a measurement system for measuring radioactivity detected in an indoor environment. This is to measure and prevent radiation generated in various spaces such as general house, workplace, and research institutes. Multi-radioactivity sensors are used to measure multiple spaces simultaneously. The measured radioactivity data is transmitted to the PC in real time through ZigBee and monitored. Even with a small amount of radioactivity, it is considered that it must be installed in a place where radiation exposure is expected, such as a laboratory or workplace, for prevention from chronic radiation syndrome.

  • PDF

Development of Geographical Information System for the Realtime Environmental Radioactivity Monitoring (환경방사능 데이터 분석을 위한 실시간 환경 감시차량 관제 시스템 구축)

  • Shon, HoWoong;Kim, InHyun;Lee, Yun;Kim, YoungWoo
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.61-72
    • /
    • 2004
  • In this project, under the server-client environment, GIS for the radiological emergency and control system of the vehicles for the environmental radioactivity monitoring was complete. This system is able to display environmental radioactivity data and vehicle's locations through wireless network on real time. Furthermore, it supports not only static analysis function with the collected data regarding nuclear type, collecting time period and vehicle's location but also a documents printing out function.

  • PDF

Uncertainty Analysis of the Calculated Radioactivity in Liquid Effluent Released as Batch Mode from a Nuclear Power Plant (발전용원자로에서 뱃치방식으로 배출되는 액체상 방사성물질의 방사능 평가결과에 대한 불확도 해석)

  • 정재학;박원재
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.562-571
    • /
    • 2003
  • A series of factors such as sampling, pretreatment measurement, volume estimation which induces uncertainty of the calculated radioactivity in liquid effluent released from a nuclear power plant were analyzed. It is innately impossible to estimate exact error of the calculated radioactivity, since most of the input parameters are determined by a single measurement and true value of the released radioactivity cannot be known. In this paper, a systematic model to calculate uncertainty of the released liquid radioactivity was developed based upon the guidance report published by the ISO in 1993, and the model was applied to a set of hypothetical batch release conditions. As a result, the Priority of each input parameter was turned out to be (1) wastewater volume, (2) sample volume, and (3) measured radioactivity of the sample. In addition, probability distribution of the released radioactivity was simulated by Monte Carlo method combining the probability distribution of each input parameter It was shown that the radioactivity released to the environment, which has been reported as a single value, has a certain form of probability distribution.

  • PDF

In Situ Gamma-ray Spectrometry Using an LaBr3(Ce) Scintillation Detector

  • Ji, Young-Yong;Lim, Taehyung;Lee, Wanno
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.85-96
    • /
    • 2018
  • Background: A variety of inorganic scintillators have been developed and improved for use in radiation detection and measurement, and in situ gamma-ray spectrometry in the environment remains an important area in nuclear safety. In order to verify the feasibility of promising scintillators in an actual environment, a performance test is necessary to identify gamma-ray peaks and calculate the radioactivity from their net count rates in peaks. Materials and Methods: Among commercially available scintillators, $LaBr_3(Ce)$ scintillators have so far shown the highest energy resolution when detecting and identifying gamma-rays. However, the intrinsic background of this scintillator type affects efficient application to the environment with a relatively low count rate. An algorithm to subtract the intrinsic background was consequently developed, and the in situ calibration factor at 1 m above ground level was calculated from Monte Carlo simulation in order to determine the radioactivity from the measured net count rate. Results and Discussion: The radioactivity of six natural radionuclides in the environment was evaluated from in situ gamma-ray spectrometry using an $LaBr_3(Ce)$ detector. The results were then compared with those of a portable high purity Ge (HPGe) detector with in situ object counting system (ISOCS) software at the same sites. In addition, the radioactive cesium in the ground of Jeju Island, South Korea, was determined with the same assumption of the source distribution between measurements using two detectors. Conclusion: Good agreement between both detectors was achieved in the in situ gamma-ray spectrometry of natural as well as artificial radionuclides in the ground. This means that an $LaBr_3(Ce)$ detector can produce reliable and stable results of radioactivity in the ground from the measured energy spectrum of incident gamma-rays at 1 m above the ground.

Effect of Coincidence Gamma-ray Spectroscopy to the Reduction of Background Spectrum

  • Kim, Taewook;Changsoo Yoou;Chongmook park;Kim, Byungtae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.464-469
    • /
    • 1998
  • A coincidence gamma-ray spectroscopy method was applied to reduce the background radioactivity for measuring the activity of radioisotopes in a sample in the presence of environmental natural radioactivity. A HPGe detector was used for the coincident spectrum as a main detector and a NaI(Tl) scintillation detector for gating purposes as an associated detector. For coincidence spectroscopy the whole energy spectrum of associated detector was used instead of gate signals. The coincident events obtained from the gating spectrum was evaluated by a coincidence computer program in this study instead of timing circuit. In this work, the background of detection environment was reduced to factor 100 and peaks to be determined was reduced to factor 30 using the coincidence gamma-ray spectroscopy.

  • PDF

Preliminary Estimation of Activation Products Inventory in Reactor Components for Kori unit 1 decommissioning (고리1호기 해체시의 원자로 구조물에서의 방사회 생성물 재고량 예비평가)

  • Lee, Kyung-Jin;Kim, Hak-Soo;Sin, Sang-Woon;Song, Myung-Jae;Lee, Youn-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.109-116
    • /
    • 2003
  • Based on the necessity to evaluate the activation products inventory during decommissioning lot domestic nuclear power plants, a preliminary estimation of the activation products inventory for Kori unit 1, which is getting close to the end of lifetime, was carried out with ANISN and ORIGEN2 code. In order to calculate neutron nux using ANISN code, the reactor was divided into 9 zones from core to bioshield concrete for radial direction. Also :he cross-section of main nuclides were calibrated with neutron flux in the reactor pressure vessel(RPV) region. The results showed that 95 % of tile total radioactivity in RPV from reactor shutdown to 10 years came from the nuclides of $^{55}Fe,\;^{59}Ni,\;^{63}Ni\;and\;^{60}Co$. And the total radioactivity with cooling of more than 50 years after decommissioning was no more than 0.2 % of at the time of shutdown. Considering the weight of RPV is 210 tons, the total radioactivity of RPV reached to $5.25{\times}10^{6}GBq$ at shutdown time. As compared with the total radioactivity of bioshield concrete at reactor shutdown time, the radioactivity after tooling more than 10 years was below 1 %.

AN INVESTIGATION INTO RADIATION LEVELS ASSOCIATED WITH DISMANTLING THE KOREA RESEARCH REACTOR

  • Choi, Geun-Sik;Kim, Hee-Reyoung;Han, Moon-Hee
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.468-473
    • /
    • 2010
  • We confirmed that the dismantling of two research reactors with thermal power of $2MW_{th}$ and $100kW_{th}$, respectively, reveals no significant difference between the radiation levels of the research reactor site and the surrounding environment far away from it, from the radiation level aspect. Radiation dose and radioactivity were measured at monitoring points around the research reactor site of the Korea Atomic Energy Research Institute (KAERI) in Seoul and comparison points 0.5 km to 3.3 km from the site. To grasp trends in the radiation levels during dismantling from the end of 2002 to the end of 2007, the gamma radiation dose rate, the accumulated dose, and the radioactivity of the strontium, tritium, and gamma isotopes were statistically treated and estimated. The averages of these items between the two groups, the research reactor site and comparison points, were assessed by applying a T-test with a significance level of 0.05. P-values found by using the T-test were from 0.12 to 0.83 where the values were much higher than the significance level. As a result, no difference was observed between the radiation levels at the research reactor site and at the comparison points by this T-test. This study showed that dismantling activity of the Korea Research Reactor of the Seoul site did not expose the public or the environment to harmful levels of radiation.