• Title/Summary/Keyword: Environment Conscious Manufacturing

Search Result 22, Processing Time 0.021 seconds

Effect of Environment-conscious Procurement Logistics Activity and Logistics Strategy on Logistics Performance (조달물류에서 환경친화적 활동이 조달물류 성과에 미치는 영향)

  • Park, Seog-Ha;Lee, Sung-Ho;Kim, Che-Soong
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.4
    • /
    • pp.71-82
    • /
    • 2007
  • For a sustainable development, the resources circulation system should be established and an environment-conscious activities are required at the same time. These activities should be also implemented in logistics area. Especially, green procurement activities in inbound logistics is recognized as a very important factors in the early phase of an environment-conscious activities. In this paper, we are to suggest the direction through statistical analysis of effects, and cause of influences of environmental procurement logistics activities on logistics performance by environmental logistics strategy and by the size of enterprises, and by Environmental Management System. This study was conducted with the subjects of manufacturing enterprises with concurrent reviews of literature and statistical analysis, and the meaning of this study would be the analysis of the influencers of environment-conscious procurement logistics activities on logistics performance different from existing logistics studies.

Environmentally Conscious High Speed Machining Characteristics of Aluminum Alloys(AC4C.1) (알루미늄 합금(AC4C.1)의 환경친화적 고속가공 특성)

  • Bae, Jung-Cheol;Hwang, In-Ok;Kang, Ik-Soo;Kim, Jung-Suk;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • Recently, environmental pollution has become a significant problem in industry and many researchers have investigated in order to preserve the environment. Environmentally conscious machining and technology have more important position in machining process, because cutting fluid has bad influence on the environment in milling process. This research is the experimental study on high speed machining of aluminum alloys through environmentally conscious machining. In this study, the surface roughness and chip appearance was investigated in the machining of aluminum alloys by dry machining, using cutting fluid and oil mist.

  • PDF

A Study of the Production Control Model for a Remanufacturing Environment of Environmentally Conscious Manufacturing System (환경친화적 생산시스템의 리매뉴팩쳐링 환경용 생산통제모형 개발에 관한 연구)

  • Kim Hyun Soo;Choi Young Jung
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.319-327
    • /
    • 2002
  • As one of the developing countries in the world trade market, we have to apply the environmental concept at the development of a product for environmentally conscious manufacturing system(ECMS). Traditionally, Production control model has been studied based on a new product manufacturing environment. However, ECMS such as a remanufacturing system should be developed and implemented for highly competitive environment in 21C. The objective of this study was to extend the research of production control model by applying it at the remanufacturing environment of ECMS and to test the applicability of current production control model at the remanufacturing environment by the simulation experimental study.

  • PDF

A Study on the Production Control Model for a Remanufacturing Environment of Environmentally Conscious Manufacturing System (환경친화적 생산시스템의 리매뉴팩쳐링 환경용 생산통제모형 개발에 관한 연구)

  • 김현수;한대희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.3
    • /
    • pp.50-57
    • /
    • 2002
  • As one of the developing countries in the world trade market, we have to apply the environmental concept at the development of a product for environmentally conscious manufacturing system(ECMS). Traditionally, production control model has been studied based on a new product manufacturing environment. However, ECMS such as a remanufacturing system should be developed and implemented for highly competitive environment in 21C. The objective of this study was to extend the research of production control model by applying it at the remanufacturing environment of ECMS and to test the applicability of current production control model at the remanufacturing environment by the simulation experimental study.

A Study on Environmentally Conscious Manufacturing Processes using LCA (환경친화적 절삭가공방법에 관한 연구 - LCA적용)

  • 김종복;한영근
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.625-629
    • /
    • 2000
  • The objective of ECMS(Environmentally Conscious Manufacturing Systems) is to consider environmental effects through the entire product life cycle from product development stage to design, manufacturing, supplying, using and disposing stage. Recently, environment-oriented recycling, reusing and manufacturing technologies have been researched actively in every engineering fields. In the field of chemical engineering, HHS (Health Hazard Scores) which classifies and analyzes hazardous materials in production processes has been presented. Metal cutting processes also have a lot of harmful factors, and especially hazardous components in cutting fluids have been known to have a bad effect on workers and working area. However, research works such as HHS have been little accomplished in metal cutting processes. In this research, a environmentally conscious machining process is presented by classifying hazardous components in cutting fluids, by using LCA(Life Cycle Assessments) and HHS method, and by evaluating environmental effects from cutting fluids.

  • PDF

Selection of Environmentally Conscious Manufacturing's Program Using Multi-Criteria Decision Making: A Case Study in Electronic Company

  • Sutapa, I. Nyoman;Panjaitan, Togar W.S.
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.123-127
    • /
    • 2011
  • Nowadays, green purchasing, stop global warming, love the mother earth, and others that related to environment become hot issues. Manufactures industries tend to more active and responsive to those issues by adopting green strategies or program like Environmentally Conscious Manufacturing (ECM). In this article, an electronic company had applied 12 ECM Program and tries to choose one of those programs using 6 criteria, such as total cost involved, quality, recyclable material, process waste reduction, packaging waste reduction, and regulation compliance. By using multi-criteria decision making model, i.e. Analytical Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and Modified TOPSIS methods, the ECM Program 9 (Open pit) is the best option.

A Study on Environmentally Conscious Machining Processes using LCA (LCA 기법을 통한 환경친화적 가공 방법에 관한 연구)

  • 한영근;김종복
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.1
    • /
    • pp.141-159
    • /
    • 2000
  • The objective of ECMS(Environmentally Conscious Manufacturing Systems) is to consider environmental effects through the entire product life cycle from product development stage to design, manufacturing, supplying, using and disposing stage. Recently, environment-oriented recycling, reusing and manufacturing technologies have been researched actively in every engineering fields. In the field of chemical engineering, HHS(Health Hazard Scores) which classifies and analyzes hazardous materials in production processes has been presented. Metal cutting processes also have a lot of harmful factors, and especially hazardous components in cutting fluids have been known to have a bad effect on workers and working area. However, research works such as HHS have been little accomplished in metal cutting processes. In this research, a environmentally conscious machining process is presented by classifying hazardous components in cutting fluids, by using LCA(Life Cycle Assessments) and HHS method, and by evaluating environmental effects from cutting fluids.

  • PDF

Environmentally Conscious High Speed Machining Characteristics of Aluminium Alloys(AC4C.1) (알루미늄 합금(AC4C.1)의 환경친화적 고속가공 특성)

  • 황인옥;강익수;강명창;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.95-99
    • /
    • 2003
  • Recently, environmental pollution has become a significant problem in industry and many researches have been investigated in order to preserve the environment. Environmentally conscious machining and technology have more and more important position in machining process. The cutting fluid has greatly bad influence on the environment in the milling process. This research is experimental study on high speed machining of aluminum alloys through environmentally conscious machining. In this study, the machinability surface roughness and chip appearance was investigated in the machining of aluminum alloys applied dry machining and using cutting fluid, oil mist.

  • PDF

Optimum Machining Condition of Die Steel In The Oil-mist Condition (오일미스트 조건에서의 금형강의 최적절삭조건)

  • Kim Sang-Min;Kim Joon-Hyun;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • The purposes of using cutting fluid during cutting have been cooling, lubricating, chip washing and anti-corroding. However, the present manufacturing industry restricts the use of cutting fluid because cutting fluid contains poisonous substances which are harmful to the human body. Therefore environmentally conscious machining and technology have more important position in machining process because cutting fluids have significant influence on the environment in milling process. In this study, environmentally conscious machining can be obtained by the way of selecting the optimum machinig conditon using the design of experiment. Cutting using oil-mist showed better cutting characteristics than dry, air and fluid cutting with respect to by cutting force, tool wear and surface roughness. Also, the optimum machining condition for cutting using oil-mist could be selected through Taguchi method.

Analysis of Cutting Properties with Reference to Amount of Coolant used in an Environment-Conscious Turning Process

  • Yang, Seung-Han;Lee, Young-Moon;Kim, Young-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2182-2189
    • /
    • 2004
  • In the recent years, environmentally conscious design and manufacturing technologies have attracted considerable attention. The coolants, lubricants, solvents, metallic chips and discarded tools from manufacturing operations will harm our environment and the earth's ecosystem. In the present work, the Tukey method of multiple comparisons is used to select the minimum level of coolant required in a turning process. The amount of coolant is varied in 270 designed experiments and the parameters cutting temperature, surface roughness, and specific cutting energy are carefully evaluated. The effects of coolant mix ratio as well as the amount of coolant on the turning process are studied in the present work. The cutting temperature and surface roughness for different quantity of coolant are investigated by analysis of variance (ANOVA) - test and a multiple comparison method. ANOVA-test results signify that the average tool temperature and surface roughness depend on the amount of coolant. Based on Tukey's Honestly Significant Difference (HSD) method, one of the multiple comparison methods, the minimum level of coolant is 1.0 L/min with 2% mix ratio in the aspect of controlling tool temperature. F-test concludes that the amount of coolant used does not have any significant effect on specific cutting energy. Finally, Tukey method ascertains that 0.5 L/min with 6% mix ratio is the minimum level of coolant required in turning process without any serious degradation of the surface finish. Considering all aspects of cutting, the minimum coolant required is 1.0 L/min with 6% mix ratio. It is merely half the coolant currently used i.e. 2.0 L/min with 10% mix ratio. Minimal use of coolant not only economically desirable for reducing manufacturing cost but also it imparts fewer hazards to human health. Also, sparing use of coolant will eventually transform the turning process into a more environment-conscious manufacturing process.